Abdullah-Basar's picture
Create app.py
f0801c7 verified
raw
history blame
5.94 kB
import streamlit as st
import os
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
import pandas as pd
import matplotlib.pyplot as plt
# Streamlit App
st.title("SustainaBot: Solar Energy Advisor")
st.sidebar.header("User Input")
# Input for Groq API Key
GROQ_API_KEY = "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"
client = Groq(api_key = GROQ_API_KEY)
# Initialize the RAG components
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
retriever = RagRetriever.from_pretrained("facebook/rag-token-nq")
model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-nq")
# Helper function for energy demand calculation
def calculate_energy(appliances):
total_energy = 0
total_power = 0
for app, details in appliances.items():
total_energy += details['quantity'] * details['wattage'] * details['hours'] / 1000 # Energy in kWh
total_power += details['quantity'] * details['wattage'] # Power in Watts
return total_energy, total_power
# Predefined appliances with their default wattage
predefined_appliances = {
"Select Appliance": 0, # Default placeholder
"LED Light": 10,
"Air Conditioner": 2000,
"Refrigerator": 150,
"Washing Machine": 500,
"Fan": 75,
"Laptop": 50,
"Television": 100,
"Microwave Oven": 1000,
"Electric Water Heater": 1500,
"Dishwasher": 1200,
"Coffee Maker": 800,
"Toaster": 1200,
"Hair Dryer": 1500,
"Electric Kettle": 1500,
"Oven": 2000,
"Vacuum Cleaner": 1000,
"Iron": 1200,
"Blender": 300,
"Clothes Dryer": 1800,
"Space Heater": 1500,
"Dehumidifier": 700,
"Freezer": 400,
"Electric Grill": 1200,
"Sewing Machine": 100,
"Projector": 300,
"Gaming Console": 200,
"Electric Fan Heater": 1500
}
if "appliances" not in st.session_state:
st.session_state.appliances = {}
# Function to reset appliance state
def reset_appliances():
st.session_state.appliances = {}
# Add appliance inputs dynamically
appliance_count = len(st.session_state.appliances)
for i in range(appliance_count):
with st.sidebar.expander(f"Appliance {i+1} Details"):
app_name = st.selectbox(f"Appliance {i+1} Name", options=list(predefined_appliances.keys()), key=f"app{i}_name")
quantity = st.number_input(f"Quantity of {app_name}", min_value=1, step=1, key=f"app{i}_quantity", value=1)
wattage = predefined_appliances.get(app_name, 0) # Default wattage
hours = st.number_input(f"Hours used per day", min_value=1, step=1, key=f"app{i}_hours", value=1)
power = quantity * wattage
st.write(f"**Total Power (Watts):** {power} W")
if app_name and app_name != "Select Appliance":
st.session_state.appliances[app_name] = {"quantity": quantity, "wattage": wattage, "hours": hours}
# Button to add more appliances
if st.sidebar.button("Add Appliance"):
st.session_state.appliances[f"Appliance {len(st.session_state.appliances) + 1}"] = {"quantity": 1, "wattage": 0, "hours": 0}
# Button to reset appliances
if st.sidebar.button("Reset Appliances"):
reset_appliances()
# Input for location and budget
location = st.sidebar.text_input("Enter your Location (City, Country)")
budget = st.sidebar.number_input("Enter your Budget for Solar System (in USD)", min_value=100, step=10)
if st.sidebar.button("Submit"):
# Calculate energy demand
daily_energy, total_power = calculate_energy(st.session_state.appliances)
st.write(f"### Total Daily Energy Demand: {daily_energy:.2f} kWh")
st.write(f"### Total Power Demand: {total_power:.2f} W")
# RAG model interaction
prompt = f"Provide solar recommendations for a location: {location}, daily energy: {daily_energy:.2f} kWh, budget: {budget} USD."
# Tokenizing and retrieval process
inputs = tokenizer(prompt, return_tensors="pt")
question_input = inputs['input_ids']
doc_scores, docs = retriever(question_input)
# Generating the response
generated_output = model.generate(input_ids=question_input, context_input_ids=docs[0]['text'])
answer = tokenizer.decode(generated_output[0], skip_special_tokens=True)
st.write("### Solar Recommendations")
st.write(answer)
# Display potential savings and pricing (same as before)
savings = daily_energy * 30 * 0.2 # Assuming $0.2/kWh savings
st.write(f"By switching to solar, you could save approximately **${savings:.2f} per month!**")
# Approximate Pricing Section
st.write("### Solar Installation Prices")
st.write("""
- **1 kW System:** Approx. PKR 120,000 - 150,000
- **3 kW System:** Approx. PKR 350,000 - 400,000
- **5 kW System:** Approx. PKR 600,000 - 700,000
- **10 kW System:** Approx. PKR 1,200,000 - 1,500,000
""")
# Visualization
st.write("### Appliance Breakdown")
if st.session_state.appliances:
appliance_data = pd.DataFrame([
{"Appliance": k, "Quantity": v['quantity'], "Daily Energy (kWh)": v['quantity'] * v['wattage'] * v['hours'] / 1000, "Power (W)": v['quantity'] * v['wattage']}
for k, v in st.session_state.appliances.items()
])
st.table(appliance_data)
# Bar chart for visualization
st.write("### Energy Consumption by Appliance")
fig, ax = plt.subplots()
ax.bar(appliance_data["Appliance"], appliance_data["Daily Energy (kWh)"], color='skyblue')
ax.set_xlabel("Appliances")
ax.set_ylabel("Daily Energy (kWh)")
ax.set_title("Energy Consumption Breakdown")
plt.xticks(rotation=45, ha="right")
st.pyplot(fig)
# Highlight the most energy-consuming appliance
max_energy_app = appliance_data.loc[appliance_data["Daily Energy (kWh)"].idxmax()]
st.write(f"**Most Energy-Consuming Appliance:** {max_energy_app['Appliance']} consuming {max_energy_app['Daily Energy (kWh)']:.2f} kWh daily.")