Abdulrhman37's picture
intial commit
e8ed137
raw
history blame contribute delete
991 Bytes
import gradio as gr
import joblib
# Load the pre-trained model and vectorizer
model = joblib.load('models/stacking_model.pkl')
vectorizer = joblib.load('models/count_vectorizer.pkl')
# Define the prediction function
def predict_class(text):
text_vector = vectorizer.transform([text])
class_value = model.predict(text_vector)[0]
probability = model.predict_proba(text_vector)
class_name = 'ايجابي' if class_value == 1 else 'سلبي'
return class_name, round(probability[0][class_value], 2)
# Create the Gradio interface
interface = gr.Interface(
fn=predict_class,
inputs="textbox", # Input is a textbox where users input their text
outputs=[gr.Textbox(label="التصنيف"), gr.Textbox(label="النسبة")], # Output labels for class and probability
title="تصنيف المشاعر",
description="أدخل النص لتحديد المشاعر (إيجابي أو سلبي) والنسبة."
)
# Launch the Gradio app
interface.launch()