Spaces:
Sleeping
Sleeping
AbeerTrial
commited on
Commit
·
4aee695
1
Parent(s):
26e6817
Upload 14 files
Browse files- .gitattributes +1 -0
- app.py +432 -0
- docs/Benjamin Martinez.docx +0 -0
- docs/David Moore.docx +0 -0
- docs/Isabella Brown.docx +0 -0
- docs/Jackson Lee.docx +0 -0
- docs/Jerry Tylor.docx +0 -0
- docs/Mason Jones.docx +0 -0
- docs/Olivia Thomas.docx +0 -0
- docs/Samual Harris.docx +0 -0
- docs/Sophia Johnson.docx +0 -0
- docs/William Anderson.docx +0 -0
- local_db/index.faiss +3 -0
- local_db/index.pkl +3 -0
- requirements.txt +11 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
local_db/index.faiss filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,432 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import shutil
|
2 |
+
import os
|
3 |
+
|
4 |
+
# def copy_files(source_folder, destination_folder):
|
5 |
+
# # Create the destination folder if it doesn't exist
|
6 |
+
# if not os.path.exists(destination_folder):
|
7 |
+
# os.makedirs(destination_folder)
|
8 |
+
|
9 |
+
# # Get a list of files in the source folder
|
10 |
+
|
11 |
+
# files_to_copy = os.listdir(source_folder)
|
12 |
+
# for file_name in files_to_copy:
|
13 |
+
# source_file_path = os.path.join(source_folder, file_name)
|
14 |
+
# destination_file_path = os.path.join(destination_folder, file_name)
|
15 |
+
|
16 |
+
# # Copy the file to the destination folder
|
17 |
+
# shutil.copy(source_file_path, destination_file_path)
|
18 |
+
|
19 |
+
# print(f"Copied {file_name} to {destination_folder}")
|
20 |
+
|
21 |
+
# # Specify the source folder and destination folder paths
|
22 |
+
# source_folder = "/kaggle/input/fiver-app5210"
|
23 |
+
# destination_folder = "/local_db"
|
24 |
+
|
25 |
+
# copy_files(source_folder, destination_folder)
|
26 |
+
|
27 |
+
# def copy_files(source_folder, destination_folder):
|
28 |
+
# # Create the destination folder if it doesn't exist
|
29 |
+
# if not os.path.exists(destination_folder):
|
30 |
+
# os.makedirs(destination_folder)
|
31 |
+
|
32 |
+
# # Get a list of files in the source folder
|
33 |
+
# files_to_copy = os.listdir(source_folder)
|
34 |
+
|
35 |
+
# for file_name in files_to_copy:
|
36 |
+
# source_file_path = os.path.join(source_folder, file_name)
|
37 |
+
# destination_file_path = os.path.join(destination_folder, file_name)
|
38 |
+
|
39 |
+
# # Copy the file to the destination folder
|
40 |
+
# shutil.copy(source_file_path, destination_file_path)
|
41 |
+
|
42 |
+
# print(f"Copied {file_name} to {destination_folder}")
|
43 |
+
|
44 |
+
# # Specify the source folder and destination folder paths
|
45 |
+
# source_folder = "/kaggle/input/fiver-app-docs"
|
46 |
+
# destination_folder = "/docs"
|
47 |
+
|
48 |
+
# copy_files(source_folder, destination_folder)
|
49 |
+
|
50 |
+
import os
|
51 |
+
import openai
|
52 |
+
|
53 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
54 |
+
os.environ["OPENAI_API_KEY"]
|
55 |
+
|
56 |
+
|
57 |
+
def api_key(key):
|
58 |
+
|
59 |
+
import os
|
60 |
+
import openai
|
61 |
+
|
62 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
63 |
+
os.environ["OPENAI_API_KEY"] = key
|
64 |
+
openai.api_key = key
|
65 |
+
|
66 |
+
return "Successful!"
|
67 |
+
|
68 |
+
def save_file(input_file):
|
69 |
+
import shutil
|
70 |
+
import os
|
71 |
+
|
72 |
+
destination_dir = "/home/user/app/file/"
|
73 |
+
os.makedirs(destination_dir, exist_ok=True)
|
74 |
+
|
75 |
+
output_dir="/home/user/app/file/"
|
76 |
+
|
77 |
+
for file in input_file:
|
78 |
+
shutil.copy(file.name, output_dir)
|
79 |
+
|
80 |
+
return "File(s) saved successfully!"
|
81 |
+
|
82 |
+
def process_file():
|
83 |
+
from langchain.document_loaders import PyPDFLoader
|
84 |
+
from langchain.document_loaders import DirectoryLoader
|
85 |
+
from langchain.document_loaders import TextLoader
|
86 |
+
from langchain.document_loaders import Docx2txtLoader
|
87 |
+
from langchain.vectorstores import FAISS
|
88 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
89 |
+
from langchain.text_splitter import CharacterTextSplitter
|
90 |
+
import openai
|
91 |
+
|
92 |
+
loader1 = DirectoryLoader('/home/user/app/file/', glob="./*.pdf", loader_cls=PyPDFLoader)
|
93 |
+
document1 = loader1.load()
|
94 |
+
|
95 |
+
loader2 = DirectoryLoader('/home/user/app/file/', glob="./*.txt", loader_cls=TextLoader)
|
96 |
+
document2 = loader2.load()
|
97 |
+
|
98 |
+
loader3 = DirectoryLoader('/home/user/app/file/', glob="./*.docx", loader_cls=Docx2txtLoader)
|
99 |
+
document3 = loader3.load()
|
100 |
+
|
101 |
+
document1.extend(document2)
|
102 |
+
document1.extend(document3)
|
103 |
+
|
104 |
+
text_splitter = CharacterTextSplitter(
|
105 |
+
separator="\n",
|
106 |
+
chunk_size=1000,
|
107 |
+
chunk_overlap=200,
|
108 |
+
length_function=len)
|
109 |
+
|
110 |
+
docs = text_splitter.split_documents(document1)
|
111 |
+
embeddings = OpenAIEmbeddings()
|
112 |
+
|
113 |
+
file_db = FAISS.from_documents(docs, embeddings)
|
114 |
+
file_db.save_local("/home/user/app/file_db/")
|
115 |
+
|
116 |
+
return "File(s) processed successfully!"
|
117 |
+
|
118 |
+
def formatted_response(docs, response):
|
119 |
+
formatted_output = response + "\n\nSources"
|
120 |
+
|
121 |
+
for i, doc in enumerate(docs):
|
122 |
+
source_info = doc.metadata.get('source', 'Unknown source')
|
123 |
+
page_info = doc.metadata.get('page', None)
|
124 |
+
|
125 |
+
# Get the file name without the directory path
|
126 |
+
file_name = source_info.split('/')[-1].strip()
|
127 |
+
|
128 |
+
if page_info is not None:
|
129 |
+
formatted_output += f"\n{file_name}\tpage no {page_info}"
|
130 |
+
else:
|
131 |
+
formatted_output += f"\n{file_name}"
|
132 |
+
|
133 |
+
return formatted_output
|
134 |
+
|
135 |
+
def search_file(question):
|
136 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
137 |
+
from langchain.vectorstores import FAISS
|
138 |
+
from langchain.chains.question_answering import load_qa_chain
|
139 |
+
from langchain.callbacks import get_openai_callback
|
140 |
+
from langchain.llms import OpenAI
|
141 |
+
import openai
|
142 |
+
from langchain.chat_models import ChatOpenAI
|
143 |
+
embeddings = OpenAIEmbeddings()
|
144 |
+
file_db = FAISS.load_local("/home/user/app/file_db/", embeddings)
|
145 |
+
docs = file_db.similarity_search(question)
|
146 |
+
|
147 |
+
llm = ChatOpenAI(model_name='gpt-3.5-turbo')
|
148 |
+
chain = load_qa_chain(llm, chain_type="stuff")
|
149 |
+
with get_openai_callback() as cb:
|
150 |
+
response = chain.run(input_documents=docs, question=question)
|
151 |
+
print(cb)
|
152 |
+
|
153 |
+
return formatted_response(docs, response)
|
154 |
+
|
155 |
+
def search_local(question):
|
156 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
157 |
+
from langchain.vectorstores import FAISS
|
158 |
+
from langchain.chains.question_answering import load_qa_chain
|
159 |
+
from langchain.callbacks import get_openai_callback
|
160 |
+
from langchain.llms import OpenAI
|
161 |
+
import openai
|
162 |
+
from langchain.chat_models import ChatOpenAI
|
163 |
+
embeddings = OpenAIEmbeddings()
|
164 |
+
file_db = FAISS.load_local("/home/user/app/local_db/", embeddings)
|
165 |
+
docs = file_db.similarity_search(question)
|
166 |
+
|
167 |
+
print(docs)
|
168 |
+
type(docs)
|
169 |
+
llm = ChatOpenAI(model_name='gpt-3.5-turbo')
|
170 |
+
chain = load_qa_chain(llm, chain_type="stuff")
|
171 |
+
with get_openai_callback() as cb:
|
172 |
+
response = chain.run(input_documents=docs, question=question)
|
173 |
+
print(cb)
|
174 |
+
|
175 |
+
return formatted_response(docs, response)
|
176 |
+
|
177 |
+
def delete_file():
|
178 |
+
|
179 |
+
import shutil
|
180 |
+
|
181 |
+
path1 = "/home/user/app/file/"
|
182 |
+
path2 = "/home/user/app/file_db/"
|
183 |
+
|
184 |
+
try:
|
185 |
+
shutil.rmtree(path1)
|
186 |
+
shutil.rmtree(path2)
|
187 |
+
return "Deleted Successfully"
|
188 |
+
|
189 |
+
except:
|
190 |
+
return "Already Deleted"
|
191 |
+
|
192 |
+
import os
|
193 |
+
|
194 |
+
def list_files_in_directory(directory):
|
195 |
+
file_list = []
|
196 |
+
for root, dirs, files in os.walk(directory):
|
197 |
+
for file in files:
|
198 |
+
file_list.append(file)
|
199 |
+
return file_list
|
200 |
+
|
201 |
+
directory_path = '/home/user/app/docs'
|
202 |
+
file_list = list_files_in_directory(directory_path)
|
203 |
+
|
204 |
+
print("List of file names in the directory:")
|
205 |
+
for file_name in file_list:
|
206 |
+
print(file_name)
|
207 |
+
|
208 |
+
def soap_report(doc_name, question):
|
209 |
+
from langchain.llms import OpenAI
|
210 |
+
from langchain import PromptTemplate, LLMChain
|
211 |
+
import openai
|
212 |
+
import docx
|
213 |
+
|
214 |
+
docx_path = '/home/user/app/docs/'+doc_name
|
215 |
+
|
216 |
+
doc = docx.Document(docx_path)
|
217 |
+
extracted_text = 'Extracted text:\n\n\n'
|
218 |
+
|
219 |
+
for paragraph in doc.paragraphs:
|
220 |
+
extracted_text += paragraph.text + '\n'
|
221 |
+
|
222 |
+
question = "\n\nUse the 'Extracted text' to answer the following question:\n" + question
|
223 |
+
extracted_text += question
|
224 |
+
|
225 |
+
if extracted_text:
|
226 |
+
print(extracted_text)
|
227 |
+
else:
|
228 |
+
print("failed")
|
229 |
+
|
230 |
+
template = """Question: {question}
|
231 |
+
|
232 |
+
Answer: Let's think step by step."""
|
233 |
+
|
234 |
+
prompt = PromptTemplate(template=template, input_variables=["question"])
|
235 |
+
llm = OpenAI()
|
236 |
+
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
237 |
+
response = llm_chain.run(extracted_text)
|
238 |
+
|
239 |
+
return response
|
240 |
+
|
241 |
+
def search_gpt(question):
|
242 |
+
from langchain.llms import OpenAI
|
243 |
+
from langchain import PromptTemplate, LLMChain
|
244 |
+
|
245 |
+
template = """Question: {question}
|
246 |
+
|
247 |
+
Answer: Let's think step by step."""
|
248 |
+
|
249 |
+
prompt = PromptTemplate(template=template, input_variables=["question"])
|
250 |
+
llm = OpenAI()
|
251 |
+
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
252 |
+
response = llm_chain.run(question)
|
253 |
+
|
254 |
+
return response
|
255 |
+
|
256 |
+
def local_gpt(question):
|
257 |
+
from langchain.llms import OpenAI
|
258 |
+
from langchain import PromptTemplate, LLMChain
|
259 |
+
|
260 |
+
template = """Question: {question}
|
261 |
+
|
262 |
+
Answer: Let's think step by step."""
|
263 |
+
|
264 |
+
prompt = PromptTemplate(template=template, input_variables=["question"])
|
265 |
+
llm = OpenAI()
|
266 |
+
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
267 |
+
response = llm_chain.run(question)
|
268 |
+
|
269 |
+
return response
|
270 |
+
|
271 |
+
global output
|
272 |
+
global response
|
273 |
+
|
274 |
+
def audio_text(filepath):
|
275 |
+
import openai
|
276 |
+
global output
|
277 |
+
|
278 |
+
audio = open(filepath, "rb")
|
279 |
+
transcript = openai.Audio.transcribe("whisper-1", audio)
|
280 |
+
output = transcript["text"]
|
281 |
+
|
282 |
+
return output
|
283 |
+
|
284 |
+
def text_soap():
|
285 |
+
from langchain.llms import OpenAI
|
286 |
+
from langchain import PromptTemplate, LLMChain
|
287 |
+
global output
|
288 |
+
global response
|
289 |
+
output = output
|
290 |
+
|
291 |
+
question = "Use the following context given below to generate a detailed SOAP Report:\n\n"
|
292 |
+
question += output
|
293 |
+
print(question)
|
294 |
+
|
295 |
+
template = """Question: {question}
|
296 |
+
|
297 |
+
Answer: Let's think step by step."""
|
298 |
+
|
299 |
+
prompt = PromptTemplate(template=template, input_variables=["question"])
|
300 |
+
llm = OpenAI()
|
301 |
+
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
302 |
+
response = llm_chain.run(question)
|
303 |
+
|
304 |
+
return response
|
305 |
+
|
306 |
+
def docx(name):
|
307 |
+
global response
|
308 |
+
response = response
|
309 |
+
import docx
|
310 |
+
path = f"/home/user/app/docs/{name}.docx"
|
311 |
+
|
312 |
+
doc = docx.Document()
|
313 |
+
doc.add_paragraph(response)
|
314 |
+
doc.save(path)
|
315 |
+
|
316 |
+
return "Successfully saved .docx File"
|
317 |
+
|
318 |
+
import gradio as gr
|
319 |
+
|
320 |
+
css = """
|
321 |
+
.col{
|
322 |
+
max-width: 50%;
|
323 |
+
margin: 0 auto;
|
324 |
+
display: flex;
|
325 |
+
flex-direction: column;
|
326 |
+
justify-content: center;
|
327 |
+
align-items: center;
|
328 |
+
}
|
329 |
+
"""
|
330 |
+
|
331 |
+
with gr.Blocks(css=css) as demo:
|
332 |
+
gr.Markdown("File Chatting App")
|
333 |
+
|
334 |
+
with gr.Tab("Chat with your Files"):
|
335 |
+
with gr.Column(elem_classes="col"):
|
336 |
+
|
337 |
+
with gr.Tab("Upload and Process your Files"):
|
338 |
+
with gr.Column():
|
339 |
+
|
340 |
+
api_key_input = gr.Textbox(label="Enter your API Key here")
|
341 |
+
api_key_button = gr.Button("Submit")
|
342 |
+
api_key_output = gr.Textbox(label="Output")
|
343 |
+
|
344 |
+
file_input = gr.Files(label="Upload your File(s) here")
|
345 |
+
upload_button = gr.Button("Upload")
|
346 |
+
file_output = gr.Textbox(label="Output")
|
347 |
+
|
348 |
+
process_button = gr.Button("Process")
|
349 |
+
process_output = gr.Textbox(label="Output")
|
350 |
+
|
351 |
+
with gr.Tab("Ask Questions to your Files"):
|
352 |
+
with gr.Column():
|
353 |
+
|
354 |
+
search_input = gr.Textbox(label="Enter your Question here")
|
355 |
+
search_button = gr.Button("Search")
|
356 |
+
search_output = gr.Textbox(label="Output")
|
357 |
+
|
358 |
+
search_gpt_button = gr.Button("Ask ChatGPT")
|
359 |
+
search_gpt_output = gr.Textbox(label="Output")
|
360 |
+
|
361 |
+
delete_button = gr.Button("Delete")
|
362 |
+
delete_output = gr.Textbox(label="Output")
|
363 |
+
|
364 |
+
with gr.Tab("Chat with your Local Files"):
|
365 |
+
with gr.Column(elem_classes="col"):
|
366 |
+
|
367 |
+
local_search_input = gr.Textbox(label="Enter your Question here")
|
368 |
+
local_search_button = gr.Button("Search")
|
369 |
+
local_search_output = gr.Textbox(label="Output")
|
370 |
+
|
371 |
+
local_gpt_button = gr.Button("Ask ChatGPT")
|
372 |
+
local_gpt_output = gr.Textbox(label="Output")
|
373 |
+
|
374 |
+
with gr.Tab("Ask Question to SOAP Report"):
|
375 |
+
with gr.Column(elem_classes="col"):
|
376 |
+
|
377 |
+
soap_input = gr.Dropdown(choices=file_list, label="Choose File")
|
378 |
+
soap_question = gr.Textbox(label="Enter your Question here")
|
379 |
+
soap_button = gr.Button("Submit")
|
380 |
+
soap_output = gr.Textbox(label="Output")
|
381 |
+
|
382 |
+
with gr.Tab("Convert Audio to SOAP Report"):
|
383 |
+
with gr.Column(elem_classes="col"):
|
384 |
+
|
385 |
+
audio_text_input = gr.Audio(source="microphone", type="filepath", label="Upload your Audio File here")
|
386 |
+
audio_text_button = gr.Button("Generate Transcript")
|
387 |
+
audio_text_output = gr.Textbox(label="Output")
|
388 |
+
|
389 |
+
text_soap_button = gr.Button("Generate SOAP Report")
|
390 |
+
text_soap_output = gr.Textbox(label="Output")
|
391 |
+
|
392 |
+
docx_input = gr.Textbox(label="Enter the Name of .docx File")
|
393 |
+
docx_button = gr.Button("Save .docx File")
|
394 |
+
docx_output = gr.Textbox(label="Output")
|
395 |
+
|
396 |
+
api_key_button.click(api_key, inputs=api_key_input, outputs=api_key_output)
|
397 |
+
|
398 |
+
upload_button.click(save_file, inputs=file_input, outputs=file_output)
|
399 |
+
process_button.click(process_file, inputs=None, outputs=process_output)
|
400 |
+
|
401 |
+
search_button.click(search_file, inputs=search_input, outputs=search_output)
|
402 |
+
search_gpt_button.click(search_gpt, inputs=search_input, outputs=search_gpt_output)
|
403 |
+
|
404 |
+
delete_button.click(delete_file, inputs=None, outputs=delete_output)
|
405 |
+
|
406 |
+
local_search_button.click(search_local, inputs=local_search_input, outputs=local_search_output)
|
407 |
+
local_gpt_button.click(local_gpt, inputs=local_search_input, outputs=local_gpt_output)
|
408 |
+
|
409 |
+
soap_button.click(soap_report, inputs=[soap_input, soap_question], outputs=soap_output)
|
410 |
+
|
411 |
+
audio_text_button.click(audio_text, inputs=audio_text_input, outputs=audio_text_output)
|
412 |
+
text_soap_button.click(text_soap, inputs=None, outputs=text_soap_output)
|
413 |
+
|
414 |
+
audio_text_button.click(audio_text, inputs=audio_text_input, outputs=audio_text_output)
|
415 |
+
text_soap_button.click(text_soap, inputs=None, outputs=text_soap_output)
|
416 |
+
docx_button.click(docx, inputs=docx_input, outputs=docx_output)
|
417 |
+
|
418 |
+
|
419 |
+
demo.queue()
|
420 |
+
demo.launch()
|
421 |
+
|
422 |
+
|
423 |
+
|
424 |
+
# # Commented out IPython magic to ensure Python compatibility.
|
425 |
+
# #download file_db
|
426 |
+
|
427 |
+
# # %cd /kaggle/working/
|
428 |
+
|
429 |
+
# !zip -r "file_db.zip" "file_db"
|
430 |
+
|
431 |
+
# from IPython.display import FileLink
|
432 |
+
# FileLink("file_db.zip")
|
docs/Benjamin Martinez.docx
ADDED
Binary file (27.5 kB). View file
|
|
docs/David Moore.docx
ADDED
Binary file (27.9 kB). View file
|
|
docs/Isabella Brown.docx
ADDED
Binary file (28.3 kB). View file
|
|
docs/Jackson Lee.docx
ADDED
Binary file (27.1 kB). View file
|
|
docs/Jerry Tylor.docx
ADDED
Binary file (27.8 kB). View file
|
|
docs/Mason Jones.docx
ADDED
Binary file (28 kB). View file
|
|
docs/Olivia Thomas.docx
ADDED
Binary file (27 kB). View file
|
|
docs/Samual Harris.docx
ADDED
Binary file (27.5 kB). View file
|
|
docs/Sophia Johnson.docx
ADDED
Binary file (27.9 kB). View file
|
|
docs/William Anderson.docx
ADDED
Binary file (27.6 kB). View file
|
|
local_db/index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd0ec24292a11baff18e2d7dabd979640a377e99ee0ccbd32ea7550c439039b9
|
3 |
+
size 2107437
|
local_db/index.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e1634917e29728132745ef3406e8d38c76879f209cd4a1d1caad70e5a308443
|
3 |
+
size 321281
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy==1.22.0
|
2 |
+
langchain
|
3 |
+
PyPDF2
|
4 |
+
docx2txt
|
5 |
+
gradio
|
6 |
+
faiss-gpu
|
7 |
+
openai
|
8 |
+
tiktoken
|
9 |
+
python-docx
|
10 |
+
git+https://github.com/openai/whisper.git
|
11 |
+
sounddevice
|