File size: 9,210 Bytes
de11922 8165254 de11922 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import yaml
from together import Together
from langchain.prompts import PromptTemplate
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.output_parser import StrOutputParser
from pinecone import Pinecone
import gradio as gr
from dotenv import load_dotenv
import os
load_dotenv()
API_FILE_PATH = r"API.yml"
COURSES_FILE_PATH = r"courses.json"
def load_api_keys(api_file_path):
"""Loads API keys from a YAML file."""
with open(api_file_path, 'r') as f:
api_keys = yaml.safe_load(f)
return api_keys
def generate_query_embedding(query, together_api_key):
"""Generates embedding for the user query."""
client = Together(api_key=together_api_key)
response = client.embeddings.create(
model="WhereIsAI/UAE-Large-V1", input=query
)
return response.data[0].embedding
def initialize_pinecone(pinecone_api_key):
"""Initializes Pinecone with API key."""
return Pinecone(api_key=pinecone_api_key)
def pinecone_similarity_search(pinecone_instance, index_name, query_embedding, top_k=5):
"""Performs a similarity search in Pinecone."""
try:
index = pinecone_instance.Index(index_name)
results = index.query(vector=query_embedding, top_k=top_k, include_metadata=True)
if not results.matches:
return None
return results
except Exception as e:
print(f"Error during similarity search: {e}")
return None
def create_prompt_template():
"""Creates a prompt template for LLM."""
template = """You are a helpful AI course advisor. Based on the following context and query, suggest relevant courses.
For each course, explain:
1. Why it's relevant to the query
2. What the student will learn
3. Who should take this course
If no relevant courses are found, suggest alternative search terms.
Context: {context}
User Query: {query}
Response: Let me help you find the perfect courses for your needs! π
"""
return PromptTemplate(template=template, input_variables=["context", "query"])
def initialize_llm(together_api_key):
"""Initializes Together LLM."""
return TogetherLLM(
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
together_api_key=together_api_key,
temperature=0.3,
max_tokens=500
)
def create_chain(llm, prompt):
"""Creates a chain using the RunnableSequence approach."""
chain = (
{"context": RunnablePassthrough(), "query": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
return chain
def format_course_info(metadata):
"""Formats course information with emojis and styling."""
return f"""
π **Course Title:** {metadata.get('title', 'No title')}
π **Description:** {metadata.get('text', 'No description')}
π **Course Link:** {metadata.get('course_link', 'No link')}
π¨βπ« **Instructor:** {metadata.get('instructor', 'Not specified')}
β±οΈ **Duration:** {metadata.get('duration', 'Not specified')}
π **Level:** {metadata.get('difficulty_level', 'Not specified')}
π° **Price:** {metadata.get('price', 'Not specified')}
"""
def generate_llm_response(chain, query, retrieved_data):
"""Generates an LLM response with formatted course information."""
try:
if not retrieved_data or not retrieved_data.matches:
return "π I couldn't find any relevant courses matching your query. Please try different search terms."
context_parts = []
formatted_courses = []
for match in retrieved_data.matches:
metadata = match.metadata
if metadata:
context_parts.append(
f"Title: {metadata.get('title', 'No title')}\n"
f"Description: {metadata.get('text', 'No description')}\n"
f"Link: {metadata.get('course_link', 'No link')}"
)
formatted_courses.append(format_course_info(metadata))
if not context_parts:
return "β οΈ I found some matches but couldn't extract course information. Please try again."
context = "\n\n".join(context_parts)
llm_analysis = chain.invoke({"context": context, "query": query})
separator = "=" * 50
final_response = f"""
{llm_analysis}
π― Here are the detailed course listings:
{separator}
{''.join(formatted_courses)}
"""
return final_response
except Exception as e:
print(f"Error generating response: {e}")
return "β I encountered an error while generating the response. Please try again."
def create_gradio_interface(api_keys):
"""Creates a custom Gradio interface with improved styling."""
# Initialize components
pinecone_instance = initialize_pinecone(api_keys["pinecone_api_key"])
llm = initialize_llm(api_keys["together_ai_api_key"])
prompt = create_prompt_template()
chain = create_chain(llm, prompt)
def process_query(query):
try:
query_embedding = generate_query_embedding(query, api_keys["together_ai_api_key"])
results = pinecone_similarity_search(
pinecone_instance,
api_keys["pinecone_index_name"],
query_embedding
)
response = generate_llm_response(chain, query, results)
return response
except Exception as e:
return f"β Error: {str(e)}"
# Custom CSS for better styling
custom_css = """
.gradio-container {
background-color: #f0f8ff;
}
.input-box {
border: 2px solid #2e86de;
border-radius: 10px;
padding: 15px;
margin: 10px 0;
}
.output-box {
background-color: #ffffff;
border: 2px solid #54a0ff;
border-radius: 10px;
padding: 20px;
margin: 10px 0;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.heading {
color: #2e86de;
text-align: center;
margin-bottom: 20px;
}
.submit-btn {
background-color: #2e86de !important;
color: white !important;
border-radius: 8px !important;
padding: 10px 20px !important;
font-size: 16px !important;
}
.examples {
margin-top: 20px;
padding: 15px;
background-color: #f8f9fa;
border-radius: 10px;
}
"""
# Create Gradio interface with custom theme
theme = gr.themes.Soft().set(
body_background_fill="#f0f8ff",
block_background_fill="#ffffff",
block_border_width="2px",
block_border_color="#2e86de",
block_radius="10px",
button_primary_background_fill="#2e86de",
button_primary_text_color="white",
input_background_fill="#ffffff",
input_border_color="#2e86de",
input_radius="8px",
)
with gr.Blocks(theme=theme, css=custom_css) as demo:
gr.Markdown(
"""
# π Course Recommendation Assistant
Welcome to your personalized course finder! Ask me about any topics you're interested in learning.
I'll help you discover the perfect courses from Analytics Vidhya's collection.
## π Features:
- π Detailed course recommendations
- π― Learning path suggestions
- π Course difficulty levels
- π° Price information
""",
elem_classes=["heading"]
)
with gr.Row():
with gr.Column():
query_input = gr.Textbox(
label="What would you like to learn? π€",
placeholder="e.g., 'machine learning for beginners' or 'advanced python courses'",
lines=3,
elem_classes=["input-box"]
)
submit_btn = gr.Button(
"π Find Courses",
variant="primary",
elem_classes=["submit-btn"]
)
with gr.Row():
output = gr.Markdown(
label="Recommendations π",
elem_classes=["output-box"]
)
with gr.Row(elem_classes=["examples"]):
gr.Examples(
examples=[
["I want to learn machine learning from scratch"],
["Advanced deep learning courses"],
["Data visualization tutorials"],
["Python programming for beginners"],
["Natural Language Processing courses"]
],
inputs=query_input,
label="π Example Queries"
)
submit_btn.click(
fn=process_query,
inputs=query_input,
outputs=output
)
return demo
def main():
try:
api_keys = load_api_keys(API_FILE_PATH)
demo = create_gradio_interface(api_keys)
demo.launch(
share=True)
except Exception as e:
print(f"An error occurred during initialization: {str(e)}")
if __name__ == "__main__":
main()
|