|
import yaml
|
|
from together import Together
|
|
from langchain.llms.together import Together as TogetherLLM
|
|
from langchain.prompts import PromptTemplate
|
|
from langchain.schema.runnable import RunnablePassthrough
|
|
from langchain.schema.output_parser import StrOutputParser
|
|
from pinecone import Pinecone
|
|
import gradio as gr
|
|
from dotenv import load_dotenv
|
|
import os
|
|
|
|
load_dotenv()
|
|
|
|
|
|
API_FILE_PATH = r"C:\Users\abhay\Analytics Vidhya\API.yml"
|
|
COURSES_FILE_PATH = r"C:\Users\abhay\Analytics Vidhya\courses.json"
|
|
|
|
def load_api_keys(api_file_path):
|
|
"""Loads API keys from a YAML file."""
|
|
with open(api_file_path, 'r') as f:
|
|
api_keys = yaml.safe_load(f)
|
|
return api_keys
|
|
|
|
def generate_query_embedding(query, together_api_key):
|
|
"""Generates embedding for the user query."""
|
|
client = Together(api_key=together_api_key)
|
|
response = client.embeddings.create(
|
|
model="WhereIsAI/UAE-Large-V1", input=query
|
|
)
|
|
return response.data[0].embedding
|
|
|
|
def initialize_pinecone(pinecone_api_key):
|
|
"""Initializes Pinecone with API key."""
|
|
return Pinecone(api_key=pinecone_api_key)
|
|
|
|
def pinecone_similarity_search(pinecone_instance, index_name, query_embedding, top_k=5):
|
|
"""Performs a similarity search in Pinecone."""
|
|
try:
|
|
index = pinecone_instance.Index(index_name)
|
|
results = index.query(vector=query_embedding, top_k=top_k, include_metadata=True)
|
|
if not results.matches:
|
|
return None
|
|
return results
|
|
except Exception as e:
|
|
print(f"Error during similarity search: {e}")
|
|
return None
|
|
|
|
def create_prompt_template():
|
|
"""Creates a prompt template for LLM."""
|
|
template = """You are a helpful AI course advisor. Based on the following context and query, suggest relevant courses.
|
|
For each course, explain:
|
|
1. Why it's relevant to the query
|
|
2. What the student will learn
|
|
3. Who should take this course
|
|
|
|
If no relevant courses are found, suggest alternative search terms.
|
|
|
|
Context: {context}
|
|
User Query: {query}
|
|
|
|
Response: Let me help you find the perfect courses for your needs! π
|
|
"""
|
|
return PromptTemplate(template=template, input_variables=["context", "query"])
|
|
|
|
def initialize_llm(together_api_key):
|
|
"""Initializes Together LLM."""
|
|
return TogetherLLM(
|
|
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
|
together_api_key=together_api_key,
|
|
temperature=0.3,
|
|
max_tokens=500
|
|
)
|
|
|
|
def create_chain(llm, prompt):
|
|
"""Creates a chain using the RunnableSequence approach."""
|
|
chain = (
|
|
{"context": RunnablePassthrough(), "query": RunnablePassthrough()}
|
|
| prompt
|
|
| llm
|
|
| StrOutputParser()
|
|
)
|
|
return chain
|
|
|
|
def format_course_info(metadata):
|
|
"""Formats course information with emojis and styling."""
|
|
return f"""
|
|
π **Course Title:** {metadata.get('title', 'No title')}
|
|
|
|
π **Description:** {metadata.get('text', 'No description')}
|
|
|
|
π **Course Link:** {metadata.get('course_link', 'No link')}
|
|
|
|
π¨βπ« **Instructor:** {metadata.get('instructor', 'Not specified')}
|
|
|
|
β±οΈ **Duration:** {metadata.get('duration', 'Not specified')}
|
|
|
|
π **Level:** {metadata.get('difficulty_level', 'Not specified')}
|
|
|
|
π° **Price:** {metadata.get('price', 'Not specified')}
|
|
"""
|
|
|
|
def generate_llm_response(chain, query, retrieved_data):
|
|
"""Generates an LLM response with formatted course information."""
|
|
try:
|
|
if not retrieved_data or not retrieved_data.matches:
|
|
return "π I couldn't find any relevant courses matching your query. Please try different search terms."
|
|
|
|
context_parts = []
|
|
formatted_courses = []
|
|
|
|
for match in retrieved_data.matches:
|
|
metadata = match.metadata
|
|
if metadata:
|
|
context_parts.append(
|
|
f"Title: {metadata.get('title', 'No title')}\n"
|
|
f"Description: {metadata.get('text', 'No description')}\n"
|
|
f"Link: {metadata.get('course_link', 'No link')}"
|
|
)
|
|
formatted_courses.append(format_course_info(metadata))
|
|
|
|
if not context_parts:
|
|
return "β οΈ I found some matches but couldn't extract course information. Please try again."
|
|
|
|
context = "\n\n".join(context_parts)
|
|
llm_analysis = chain.invoke({"context": context, "query": query})
|
|
|
|
separator = "=" * 50
|
|
final_response = f"""
|
|
{llm_analysis}
|
|
|
|
π― Here are the detailed course listings:
|
|
{separator}
|
|
{''.join(formatted_courses)}
|
|
"""
|
|
return final_response
|
|
|
|
except Exception as e:
|
|
print(f"Error generating response: {e}")
|
|
return "β I encountered an error while generating the response. Please try again."
|
|
|
|
def create_gradio_interface(api_keys):
|
|
"""Creates a custom Gradio interface with improved styling."""
|
|
|
|
pinecone_instance = initialize_pinecone(api_keys["pinecone_api_key"])
|
|
llm = initialize_llm(api_keys["together_ai_api_key"])
|
|
prompt = create_prompt_template()
|
|
chain = create_chain(llm, prompt)
|
|
|
|
def process_query(query):
|
|
try:
|
|
query_embedding = generate_query_embedding(query, api_keys["together_ai_api_key"])
|
|
results = pinecone_similarity_search(
|
|
pinecone_instance,
|
|
api_keys["pinecone_index_name"],
|
|
query_embedding
|
|
)
|
|
response = generate_llm_response(chain, query, results)
|
|
return response
|
|
except Exception as e:
|
|
return f"β Error: {str(e)}"
|
|
|
|
|
|
custom_css = """
|
|
.gradio-container {
|
|
background-color: #f0f8ff;
|
|
}
|
|
.input-box {
|
|
border: 2px solid #2e86de;
|
|
border-radius: 10px;
|
|
padding: 15px;
|
|
margin: 10px 0;
|
|
}
|
|
.output-box {
|
|
background-color: #ffffff;
|
|
border: 2px solid #54a0ff;
|
|
border-radius: 10px;
|
|
padding: 20px;
|
|
margin: 10px 0;
|
|
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
|
}
|
|
.heading {
|
|
color: #2e86de;
|
|
text-align: center;
|
|
margin-bottom: 20px;
|
|
}
|
|
.submit-btn {
|
|
background-color: #2e86de !important;
|
|
color: white !important;
|
|
border-radius: 8px !important;
|
|
padding: 10px 20px !important;
|
|
font-size: 16px !important;
|
|
}
|
|
.examples {
|
|
margin-top: 20px;
|
|
padding: 15px;
|
|
background-color: #f8f9fa;
|
|
border-radius: 10px;
|
|
}
|
|
"""
|
|
|
|
|
|
theme = gr.themes.Soft().set(
|
|
body_background_fill="#f0f8ff",
|
|
block_background_fill="#ffffff",
|
|
block_border_width="2px",
|
|
block_border_color="#2e86de",
|
|
block_radius="10px",
|
|
button_primary_background_fill="#2e86de",
|
|
button_primary_text_color="white",
|
|
input_background_fill="#ffffff",
|
|
input_border_color="#2e86de",
|
|
input_radius="8px",
|
|
)
|
|
|
|
with gr.Blocks(theme=theme, css=custom_css) as demo:
|
|
gr.Markdown(
|
|
"""
|
|
# π Course Recommendation Assistant
|
|
|
|
Welcome to your personalized course finder! Ask me about any topics you're interested in learning.
|
|
I'll help you discover the perfect courses from Analytics Vidhya's collection.
|
|
|
|
## π Features:
|
|
- π Detailed course recommendations
|
|
- π― Learning path suggestions
|
|
- π Course difficulty levels
|
|
- π° Price information
|
|
""",
|
|
elem_classes=["heading"]
|
|
)
|
|
|
|
with gr.Row():
|
|
with gr.Column():
|
|
query_input = gr.Textbox(
|
|
label="What would you like to learn? π€",
|
|
placeholder="e.g., 'machine learning for beginners' or 'advanced python courses'",
|
|
lines=3,
|
|
elem_classes=["input-box"]
|
|
)
|
|
submit_btn = gr.Button(
|
|
"π Find Courses",
|
|
variant="primary",
|
|
elem_classes=["submit-btn"]
|
|
)
|
|
|
|
with gr.Row():
|
|
output = gr.Markdown(
|
|
label="Recommendations π",
|
|
elem_classes=["output-box"]
|
|
)
|
|
|
|
with gr.Row(elem_classes=["examples"]):
|
|
gr.Examples(
|
|
examples=[
|
|
["I want to learn machine learning from scratch"],
|
|
["Advanced deep learning courses"],
|
|
["Data visualization tutorials"],
|
|
["Python programming for beginners"],
|
|
["Natural Language Processing courses"]
|
|
],
|
|
inputs=query_input,
|
|
label="π Example Queries"
|
|
)
|
|
|
|
submit_btn.click(
|
|
fn=process_query,
|
|
inputs=query_input,
|
|
outputs=output
|
|
)
|
|
|
|
return demo
|
|
|
|
def main():
|
|
try:
|
|
|
|
api_keys = load_api_keys(API_FILE_PATH)
|
|
|
|
|
|
demo = create_gradio_interface(api_keys)
|
|
demo.launch(
|
|
share=True)
|
|
|
|
except Exception as e:
|
|
print(f"An error occurred during initialization: {str(e)}")
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|