Update llm_retrieval_conversation_rerank.py
Browse files- llm_retrieval_conversation_rerank.py +238 -238
llm_retrieval_conversation_rerank.py
CHANGED
|
@@ -1,239 +1,239 @@
|
|
| 1 |
-
import json
|
| 2 |
-
import os
|
| 3 |
-
from dotenv import load_dotenv
|
| 4 |
-
import yaml
|
| 5 |
-
from together import Together
|
| 6 |
-
from langchain.llms.together import Together as TogetherLLM
|
| 7 |
-
from langchain.prompts import PromptTemplate
|
| 8 |
-
from langchain.schema.runnable import RunnablePassthrough
|
| 9 |
-
from langchain.schema.output_parser import StrOutputParser
|
| 10 |
-
from pinecone import Pinecone
|
| 11 |
-
from typing import List, Dict
|
| 12 |
-
import cohere
|
| 13 |
-
load_dotenv()
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
API_FILE_PATH = r"
|
| 17 |
-
COURSES_FILE_PATH = r"
|
| 18 |
-
|
| 19 |
-
# Global list to store conversation history
|
| 20 |
-
conversation_history: List[Dict[str, str]] = []
|
| 21 |
-
|
| 22 |
-
def load_api_keys(api_file_path):
|
| 23 |
-
"""Loads API keys from a YAML file."""
|
| 24 |
-
with open(api_file_path, 'r') as f:
|
| 25 |
-
api_keys = yaml.safe_load(f)
|
| 26 |
-
return api_keys
|
| 27 |
-
|
| 28 |
-
def generate_query_embedding(query, together_api_key):
|
| 29 |
-
"""Generates embedding for the user query."""
|
| 30 |
-
client = Together(api_key=together_api_key)
|
| 31 |
-
response = client.embeddings.create(
|
| 32 |
-
model="WhereIsAI/UAE-Large-V1", input=query
|
| 33 |
-
)
|
| 34 |
-
return response.data[0].embedding
|
| 35 |
-
|
| 36 |
-
def initialize_pinecone(pinecone_api_key):
|
| 37 |
-
"""Initializes Pinecone with API key."""
|
| 38 |
-
return Pinecone(api_key=pinecone_api_key)
|
| 39 |
-
|
| 40 |
-
def pinecone_similarity_search(pinecone_instance, index_name, query_embedding, top_k=10):
|
| 41 |
-
"""Performs a similarity search in Pinecone and increase top k for reranking."""
|
| 42 |
-
try:
|
| 43 |
-
index = pinecone_instance.Index(index_name)
|
| 44 |
-
results = index.query(vector=query_embedding, top_k=top_k, include_metadata=True)
|
| 45 |
-
if not results.matches:
|
| 46 |
-
return None
|
| 47 |
-
return results
|
| 48 |
-
except Exception as e:
|
| 49 |
-
print(f"Error during similarity search: {e}")
|
| 50 |
-
return None
|
| 51 |
-
|
| 52 |
-
def create_prompt_template():
|
| 53 |
-
"""Creates a prompt template for LLM."""
|
| 54 |
-
template = """You are a helpful AI assistant that provides information on courses.
|
| 55 |
-
Based on the following context, conversation history, and new user query,
|
| 56 |
-
suggest relevant courses and explain why they might be useful, or respond accordingly if the user query is unrelated.
|
| 57 |
-
If no relevant courses are found, please indicate that.
|
| 58 |
-
|
| 59 |
-
Conversation History:
|
| 60 |
-
{conversation_history}
|
| 61 |
-
|
| 62 |
-
Context: {context}
|
| 63 |
-
User Query: {query}
|
| 64 |
-
|
| 65 |
-
Response: Let me help you find relevant courses based on your query.
|
| 66 |
-
"""
|
| 67 |
-
return PromptTemplate(template=template, input_variables=["context", "query", "conversation_history"])
|
| 68 |
-
|
| 69 |
-
def initialize_llm(together_api_key):
|
| 70 |
-
"""Initializes Together LLM."""
|
| 71 |
-
return TogetherLLM(
|
| 72 |
-
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 73 |
-
together_api_key=together_api_key,
|
| 74 |
-
temperature=0,
|
| 75 |
-
max_tokens=250
|
| 76 |
-
)
|
| 77 |
-
|
| 78 |
-
def create_chain(llm, prompt):
|
| 79 |
-
"""Creates a chain using the new RunnableSequence approach."""
|
| 80 |
-
chain = (
|
| 81 |
-
{"context": RunnablePassthrough(), "query": RunnablePassthrough(), "conversation_history": RunnablePassthrough()}
|
| 82 |
-
| prompt
|
| 83 |
-
| llm
|
| 84 |
-
| StrOutputParser()
|
| 85 |
-
)
|
| 86 |
-
return chain
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
def initialize_cohere_client(cohere_api_key):
|
| 90 |
-
"""Initializes the Cohere client."""
|
| 91 |
-
return cohere.ClientV2(api_key=cohere_api_key)
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
def rerank_results(cohere_client, query, documents, top_n=3):
|
| 95 |
-
"""Reranks documents using Cohere."""
|
| 96 |
-
try:
|
| 97 |
-
results = cohere_client.rerank(
|
| 98 |
-
query=query,
|
| 99 |
-
documents=documents,
|
| 100 |
-
top_n=top_n,
|
| 101 |
-
model="rerank-english-v3.0",
|
| 102 |
-
)
|
| 103 |
-
return results
|
| 104 |
-
except Exception as e:
|
| 105 |
-
print(f"Error reranking results: {e}")
|
| 106 |
-
return None
|
| 107 |
-
|
| 108 |
-
def generate_llm_response(chain, query, retrieved_data, history, cohere_client):
|
| 109 |
-
"""Generates an LLM response based on context and conversation history."""
|
| 110 |
-
try:
|
| 111 |
-
if not retrieved_data or not retrieved_data.matches:
|
| 112 |
-
return "I couldn't find any relevant courses matching your query. Please try a different search term."
|
| 113 |
-
|
| 114 |
-
# Prepare documents for reranking
|
| 115 |
-
documents = []
|
| 116 |
-
for match in retrieved_data.matches:
|
| 117 |
-
metadata = match.metadata
|
| 118 |
-
if metadata:
|
| 119 |
-
documents.append(
|
| 120 |
-
{ "text" :f"Title: {metadata.get('title', 'No title')}\nDescription: {metadata.get('text', 'No description')}\nLink: {metadata.get('course_link', 'No link')}"
|
| 121 |
-
}
|
| 122 |
-
)
|
| 123 |
-
|
| 124 |
-
if not documents:
|
| 125 |
-
return "I found some matches but couldn't extract course information. Please try again."
|
| 126 |
-
|
| 127 |
-
# Rerank the documents
|
| 128 |
-
reranked_results = rerank_results(cohere_client, query, documents)
|
| 129 |
-
|
| 130 |
-
if not reranked_results:
|
| 131 |
-
return "I couldn't rerank the results, please try again."
|
| 132 |
-
|
| 133 |
-
# Prepare context from reranked results
|
| 134 |
-
context_parts = []
|
| 135 |
-
for result in reranked_results.results:
|
| 136 |
-
context_parts.append(documents[result.index]["text"])
|
| 137 |
-
|
| 138 |
-
context = "\n\n".join(context_parts)
|
| 139 |
-
|
| 140 |
-
# Format conversation history
|
| 141 |
-
formatted_history = "\n".join(f"User: {item['user']}\nAssistant: {item['assistant']}" for item in history) if history else "No previous conversation."
|
| 142 |
-
|
| 143 |
-
response = chain.invoke({"context": context, "query": query, "conversation_history":formatted_history})
|
| 144 |
-
return response
|
| 145 |
-
|
| 146 |
-
except Exception as e:
|
| 147 |
-
print(f"Error generating response: {e}")
|
| 148 |
-
return "I encountered an error while generating the response. Please try again."
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
def check_context_similarity(query_embedding, previous_query_embedding, threshold=0.7):
|
| 152 |
-
"""Checks if the new query is related to the previous one."""
|
| 153 |
-
if not previous_query_embedding:
|
| 154 |
-
return False # First query, no previous embedding to compare
|
| 155 |
-
|
| 156 |
-
from numpy import dot
|
| 157 |
-
from numpy.linalg import norm
|
| 158 |
-
|
| 159 |
-
cos_sim = dot(query_embedding, previous_query_embedding) / (norm(query_embedding) * norm(previous_query_embedding))
|
| 160 |
-
return cos_sim > threshold
|
| 161 |
-
|
| 162 |
-
def main():
|
| 163 |
-
global conversation_history
|
| 164 |
-
previous_query_embedding = None
|
| 165 |
-
|
| 166 |
-
try:
|
| 167 |
-
|
| 168 |
-
api_keys = load_api_keys(API_FILE_PATH)
|
| 169 |
-
together_api_key = api_keys["together_ai_api_key"]
|
| 170 |
-
pinecone_api_key = api_keys["pinecone_api_key"]
|
| 171 |
-
index_name = api_keys["pinecone_index_name"]
|
| 172 |
-
cohere_api_key = api_keys["cohere_api_key"]
|
| 173 |
-
print("Initializing services...")
|
| 174 |
-
|
| 175 |
-
# Initialize Pinecone
|
| 176 |
-
pinecone_instance = initialize_pinecone(pinecone_api_key)
|
| 177 |
-
|
| 178 |
-
# Initialize Together LLM
|
| 179 |
-
llm = initialize_llm(together_api_key)
|
| 180 |
-
|
| 181 |
-
# Initialize Cohere client
|
| 182 |
-
cohere_client = initialize_cohere_client(cohere_api_key)
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
prompt = create_prompt_template()
|
| 187 |
-
|
| 188 |
-
# Create chain
|
| 189 |
-
chain = create_chain(llm, prompt)
|
| 190 |
-
|
| 191 |
-
print("Ready to process queries!")
|
| 192 |
-
|
| 193 |
-
while True:
|
| 194 |
-
|
| 195 |
-
user_query = input("\nEnter your query (or 'quit' to exit): ").strip()
|
| 196 |
-
|
| 197 |
-
if user_query.lower() == 'quit':
|
| 198 |
-
break
|
| 199 |
-
|
| 200 |
-
if not user_query:
|
| 201 |
-
print("Please enter a valid query.")
|
| 202 |
-
continue
|
| 203 |
-
|
| 204 |
-
try:
|
| 205 |
-
print("Generating query embedding...")
|
| 206 |
-
query_embedding = generate_query_embedding(user_query, together_api_key)
|
| 207 |
-
|
| 208 |
-
# Check context similarity
|
| 209 |
-
if previous_query_embedding and check_context_similarity(query_embedding, previous_query_embedding):
|
| 210 |
-
print("Continuing the previous conversation...")
|
| 211 |
-
else:
|
| 212 |
-
print("Starting a new conversation...")
|
| 213 |
-
conversation_history = [] # Clear history for a new conversation
|
| 214 |
-
|
| 215 |
-
print("Searching for relevant courses...")
|
| 216 |
-
pinecone_results = pinecone_similarity_search(
|
| 217 |
-
pinecone_instance, index_name, query_embedding
|
| 218 |
-
)
|
| 219 |
-
|
| 220 |
-
print("Generating response...")
|
| 221 |
-
llm_response = generate_llm_response(chain, user_query, pinecone_results, conversation_history, cohere_client)
|
| 222 |
-
|
| 223 |
-
print("\nResponse:")
|
| 224 |
-
print(llm_response)
|
| 225 |
-
print("\n" + "="*50)
|
| 226 |
-
|
| 227 |
-
# Update conversation history
|
| 228 |
-
conversation_history.append({"user": user_query, "assistant": llm_response})
|
| 229 |
-
previous_query_embedding = query_embedding # Save for next turn
|
| 230 |
-
|
| 231 |
-
except Exception as e:
|
| 232 |
-
print(f"Error processing query: {e}")
|
| 233 |
-
print("Please try again with a different query.")
|
| 234 |
-
|
| 235 |
-
except Exception as e:
|
| 236 |
-
print(f"An error occurred during initialization: {str(e)}")
|
| 237 |
-
|
| 238 |
-
if __name__ == "__main__":
|
| 239 |
main()
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
from dotenv import load_dotenv
|
| 4 |
+
import yaml
|
| 5 |
+
from together import Together
|
| 6 |
+
from langchain.llms.together import Together as TogetherLLM
|
| 7 |
+
from langchain.prompts import PromptTemplate
|
| 8 |
+
from langchain.schema.runnable import RunnablePassthrough
|
| 9 |
+
from langchain.schema.output_parser import StrOutputParser
|
| 10 |
+
from pinecone import Pinecone
|
| 11 |
+
from typing import List, Dict
|
| 12 |
+
import cohere
|
| 13 |
+
load_dotenv()
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
API_FILE_PATH = r".\API.yml"
|
| 17 |
+
COURSES_FILE_PATH = r".\courses.json"
|
| 18 |
+
|
| 19 |
+
# Global list to store conversation history
|
| 20 |
+
conversation_history: List[Dict[str, str]] = []
|
| 21 |
+
|
| 22 |
+
def load_api_keys(api_file_path):
|
| 23 |
+
"""Loads API keys from a YAML file."""
|
| 24 |
+
with open(api_file_path, 'r') as f:
|
| 25 |
+
api_keys = yaml.safe_load(f)
|
| 26 |
+
return api_keys
|
| 27 |
+
|
| 28 |
+
def generate_query_embedding(query, together_api_key):
|
| 29 |
+
"""Generates embedding for the user query."""
|
| 30 |
+
client = Together(api_key=together_api_key)
|
| 31 |
+
response = client.embeddings.create(
|
| 32 |
+
model="WhereIsAI/UAE-Large-V1", input=query
|
| 33 |
+
)
|
| 34 |
+
return response.data[0].embedding
|
| 35 |
+
|
| 36 |
+
def initialize_pinecone(pinecone_api_key):
|
| 37 |
+
"""Initializes Pinecone with API key."""
|
| 38 |
+
return Pinecone(api_key=pinecone_api_key)
|
| 39 |
+
|
| 40 |
+
def pinecone_similarity_search(pinecone_instance, index_name, query_embedding, top_k=10):
|
| 41 |
+
"""Performs a similarity search in Pinecone and increase top k for reranking."""
|
| 42 |
+
try:
|
| 43 |
+
index = pinecone_instance.Index(index_name)
|
| 44 |
+
results = index.query(vector=query_embedding, top_k=top_k, include_metadata=True)
|
| 45 |
+
if not results.matches:
|
| 46 |
+
return None
|
| 47 |
+
return results
|
| 48 |
+
except Exception as e:
|
| 49 |
+
print(f"Error during similarity search: {e}")
|
| 50 |
+
return None
|
| 51 |
+
|
| 52 |
+
def create_prompt_template():
|
| 53 |
+
"""Creates a prompt template for LLM."""
|
| 54 |
+
template = """You are a helpful AI assistant that provides information on courses.
|
| 55 |
+
Based on the following context, conversation history, and new user query,
|
| 56 |
+
suggest relevant courses and explain why they might be useful, or respond accordingly if the user query is unrelated.
|
| 57 |
+
If no relevant courses are found, please indicate that.
|
| 58 |
+
|
| 59 |
+
Conversation History:
|
| 60 |
+
{conversation_history}
|
| 61 |
+
|
| 62 |
+
Context: {context}
|
| 63 |
+
User Query: {query}
|
| 64 |
+
|
| 65 |
+
Response: Let me help you find relevant courses based on your query.
|
| 66 |
+
"""
|
| 67 |
+
return PromptTemplate(template=template, input_variables=["context", "query", "conversation_history"])
|
| 68 |
+
|
| 69 |
+
def initialize_llm(together_api_key):
|
| 70 |
+
"""Initializes Together LLM."""
|
| 71 |
+
return TogetherLLM(
|
| 72 |
+
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 73 |
+
together_api_key=together_api_key,
|
| 74 |
+
temperature=0,
|
| 75 |
+
max_tokens=250
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
def create_chain(llm, prompt):
|
| 79 |
+
"""Creates a chain using the new RunnableSequence approach."""
|
| 80 |
+
chain = (
|
| 81 |
+
{"context": RunnablePassthrough(), "query": RunnablePassthrough(), "conversation_history": RunnablePassthrough()}
|
| 82 |
+
| prompt
|
| 83 |
+
| llm
|
| 84 |
+
| StrOutputParser()
|
| 85 |
+
)
|
| 86 |
+
return chain
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def initialize_cohere_client(cohere_api_key):
|
| 90 |
+
"""Initializes the Cohere client."""
|
| 91 |
+
return cohere.ClientV2(api_key=cohere_api_key)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def rerank_results(cohere_client, query, documents, top_n=3):
|
| 95 |
+
"""Reranks documents using Cohere."""
|
| 96 |
+
try:
|
| 97 |
+
results = cohere_client.rerank(
|
| 98 |
+
query=query,
|
| 99 |
+
documents=documents,
|
| 100 |
+
top_n=top_n,
|
| 101 |
+
model="rerank-english-v3.0",
|
| 102 |
+
)
|
| 103 |
+
return results
|
| 104 |
+
except Exception as e:
|
| 105 |
+
print(f"Error reranking results: {e}")
|
| 106 |
+
return None
|
| 107 |
+
|
| 108 |
+
def generate_llm_response(chain, query, retrieved_data, history, cohere_client):
|
| 109 |
+
"""Generates an LLM response based on context and conversation history."""
|
| 110 |
+
try:
|
| 111 |
+
if not retrieved_data or not retrieved_data.matches:
|
| 112 |
+
return "I couldn't find any relevant courses matching your query. Please try a different search term."
|
| 113 |
+
|
| 114 |
+
# Prepare documents for reranking
|
| 115 |
+
documents = []
|
| 116 |
+
for match in retrieved_data.matches:
|
| 117 |
+
metadata = match.metadata
|
| 118 |
+
if metadata:
|
| 119 |
+
documents.append(
|
| 120 |
+
{ "text" :f"Title: {metadata.get('title', 'No title')}\nDescription: {metadata.get('text', 'No description')}\nLink: {metadata.get('course_link', 'No link')}"
|
| 121 |
+
}
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
if not documents:
|
| 125 |
+
return "I found some matches but couldn't extract course information. Please try again."
|
| 126 |
+
|
| 127 |
+
# Rerank the documents
|
| 128 |
+
reranked_results = rerank_results(cohere_client, query, documents)
|
| 129 |
+
|
| 130 |
+
if not reranked_results:
|
| 131 |
+
return "I couldn't rerank the results, please try again."
|
| 132 |
+
|
| 133 |
+
# Prepare context from reranked results
|
| 134 |
+
context_parts = []
|
| 135 |
+
for result in reranked_results.results:
|
| 136 |
+
context_parts.append(documents[result.index]["text"])
|
| 137 |
+
|
| 138 |
+
context = "\n\n".join(context_parts)
|
| 139 |
+
|
| 140 |
+
# Format conversation history
|
| 141 |
+
formatted_history = "\n".join(f"User: {item['user']}\nAssistant: {item['assistant']}" for item in history) if history else "No previous conversation."
|
| 142 |
+
|
| 143 |
+
response = chain.invoke({"context": context, "query": query, "conversation_history":formatted_history})
|
| 144 |
+
return response
|
| 145 |
+
|
| 146 |
+
except Exception as e:
|
| 147 |
+
print(f"Error generating response: {e}")
|
| 148 |
+
return "I encountered an error while generating the response. Please try again."
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def check_context_similarity(query_embedding, previous_query_embedding, threshold=0.7):
|
| 152 |
+
"""Checks if the new query is related to the previous one."""
|
| 153 |
+
if not previous_query_embedding:
|
| 154 |
+
return False # First query, no previous embedding to compare
|
| 155 |
+
|
| 156 |
+
from numpy import dot
|
| 157 |
+
from numpy.linalg import norm
|
| 158 |
+
|
| 159 |
+
cos_sim = dot(query_embedding, previous_query_embedding) / (norm(query_embedding) * norm(previous_query_embedding))
|
| 160 |
+
return cos_sim > threshold
|
| 161 |
+
|
| 162 |
+
def main():
|
| 163 |
+
global conversation_history
|
| 164 |
+
previous_query_embedding = None
|
| 165 |
+
|
| 166 |
+
try:
|
| 167 |
+
|
| 168 |
+
api_keys = load_api_keys(API_FILE_PATH)
|
| 169 |
+
together_api_key = api_keys["together_ai_api_key"]
|
| 170 |
+
pinecone_api_key = api_keys["pinecone_api_key"]
|
| 171 |
+
index_name = api_keys["pinecone_index_name"]
|
| 172 |
+
cohere_api_key = api_keys["cohere_api_key"]
|
| 173 |
+
print("Initializing services...")
|
| 174 |
+
|
| 175 |
+
# Initialize Pinecone
|
| 176 |
+
pinecone_instance = initialize_pinecone(pinecone_api_key)
|
| 177 |
+
|
| 178 |
+
# Initialize Together LLM
|
| 179 |
+
llm = initialize_llm(together_api_key)
|
| 180 |
+
|
| 181 |
+
# Initialize Cohere client
|
| 182 |
+
cohere_client = initialize_cohere_client(cohere_api_key)
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
prompt = create_prompt_template()
|
| 187 |
+
|
| 188 |
+
# Create chain
|
| 189 |
+
chain = create_chain(llm, prompt)
|
| 190 |
+
|
| 191 |
+
print("Ready to process queries!")
|
| 192 |
+
|
| 193 |
+
while True:
|
| 194 |
+
|
| 195 |
+
user_query = input("\nEnter your query (or 'quit' to exit): ").strip()
|
| 196 |
+
|
| 197 |
+
if user_query.lower() == 'quit':
|
| 198 |
+
break
|
| 199 |
+
|
| 200 |
+
if not user_query:
|
| 201 |
+
print("Please enter a valid query.")
|
| 202 |
+
continue
|
| 203 |
+
|
| 204 |
+
try:
|
| 205 |
+
print("Generating query embedding...")
|
| 206 |
+
query_embedding = generate_query_embedding(user_query, together_api_key)
|
| 207 |
+
|
| 208 |
+
# Check context similarity
|
| 209 |
+
if previous_query_embedding and check_context_similarity(query_embedding, previous_query_embedding):
|
| 210 |
+
print("Continuing the previous conversation...")
|
| 211 |
+
else:
|
| 212 |
+
print("Starting a new conversation...")
|
| 213 |
+
conversation_history = [] # Clear history for a new conversation
|
| 214 |
+
|
| 215 |
+
print("Searching for relevant courses...")
|
| 216 |
+
pinecone_results = pinecone_similarity_search(
|
| 217 |
+
pinecone_instance, index_name, query_embedding
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
print("Generating response...")
|
| 221 |
+
llm_response = generate_llm_response(chain, user_query, pinecone_results, conversation_history, cohere_client)
|
| 222 |
+
|
| 223 |
+
print("\nResponse:")
|
| 224 |
+
print(llm_response)
|
| 225 |
+
print("\n" + "="*50)
|
| 226 |
+
|
| 227 |
+
# Update conversation history
|
| 228 |
+
conversation_history.append({"user": user_query, "assistant": llm_response})
|
| 229 |
+
previous_query_embedding = query_embedding # Save for next turn
|
| 230 |
+
|
| 231 |
+
except Exception as e:
|
| 232 |
+
print(f"Error processing query: {e}")
|
| 233 |
+
print("Please try again with a different query.")
|
| 234 |
+
|
| 235 |
+
except Exception as e:
|
| 236 |
+
print(f"An error occurred during initialization: {str(e)}")
|
| 237 |
+
|
| 238 |
+
if __name__ == "__main__":
|
| 239 |
main()
|