Abhilash7 commited on
Commit
d80673e
·
verified ·
1 Parent(s): 3bec0d3

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +73 -0
app.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ from transformers import pipeline
4
+
5
+
6
+
7
+
8
+ # Load a pre-trained question answering pipeline
9
+
10
+ question_answerer = pipeline("question-answering", model="bert-large-uncased-whole-word-masking-finetuned-squad")
11
+
12
+
13
+
14
+
15
+ def answer_question(context, question):
16
+
17
+ """
18
+
19
+ Takes context and a question as input and returns the predicted answer.
20
+
21
+ """
22
+
23
+ if context and question:
24
+
25
+ result = question_answerer(question=question, context=context)
26
+
27
+ answer = result['answer']
28
+
29
+ confidence = f"{result['score']:.4f}"
30
+
31
+ return f"Answer: {answer}", f"Confidence: {confidence}"
32
+
33
+ else:
34
+
35
+ return "Please provide both context and a question.", ""
36
+
37
+
38
+
39
+
40
+ # Define the Gradio interface
41
+
42
+ iface = gr.Interface(
43
+
44
+ fn=answer_question,
45
+
46
+ inputs=[
47
+
48
+ gr.Textbox(lines=7, placeholder="Enter the context here..."),
49
+
50
+ gr.Textbox(placeholder="Ask a question about the context...")
51
+
52
+ ],
53
+
54
+ outputs=[
55
+
56
+ gr.Textbox(label="Predicted Answer"),
57
+
58
+ gr.Textbox(label="Confidence Score")
59
+
60
+ ],
61
+
62
+ title="Simple Question Answering",
63
+
64
+ description="Enter a block of text (context) and then ask a question about it. The app will try to find the answer within the text.",
65
+
66
+ )
67
+
68
+
69
+
70
+
71
+ # Launch the Gradio app
72
+
73
+ iface.launch()