File size: 8,625 Bytes
5b2fcab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Validate a trained YOLOv5 classification model on a classification dataset

Usage:
    $ bash data/scripts/get_imagenet.sh --val  # download ImageNet val split (6.3G, 50000 images)
    $ python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224  # validate ImageNet

Usage - formats:
    $ python classify/val.py --weights yolov5s-cls.pt                 # PyTorch
                                       yolov5s-cls.torchscript        # TorchScript
                                       yolov5s-cls.onnx               # ONNX Runtime or OpenCV DNN with --dnn
                                       yolov5s-cls_openvino_model     # OpenVINO
                                       yolov5s-cls.engine             # TensorRT
                                       yolov5s-cls.mlmodel            # CoreML (macOS-only)
                                       yolov5s-cls_saved_model        # TensorFlow SavedModel
                                       yolov5s-cls.pb                 # TensorFlow GraphDef
                                       yolov5s-cls.tflite             # TensorFlow Lite
                                       yolov5s-cls_edgetpu.tflite     # TensorFlow Edge TPU
                                       yolov5s-cls_paddle_model       # PaddlePaddle
"""

import argparse
import os
import sys
from pathlib import Path

import torch
from tqdm import tqdm

FILE = Path(__file__).resolve()
ROOT = FILE.parents[1]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

from models.common import DetectMultiBackend
from utils.dataloaders import create_classification_dataloader
from utils.general import (
    LOGGER,
    TQDM_BAR_FORMAT,
    Profile,
    check_img_size,
    check_requirements,
    colorstr,
    increment_path,
    print_args,
)
from utils.torch_utils import select_device, smart_inference_mode


@smart_inference_mode()
def run(
    data=ROOT / "../datasets/mnist",  # dataset dir
    weights=ROOT / "yolov5s-cls.pt",  # model.pt path(s)
    batch_size=128,  # batch size
    imgsz=224,  # inference size (pixels)
    device="",  # cuda device, i.e. 0 or 0,1,2,3 or cpu
    workers=8,  # max dataloader workers (per RANK in DDP mode)
    verbose=False,  # verbose output
    project=ROOT / "runs/val-cls",  # save to project/name
    name="exp",  # save to project/name
    exist_ok=False,  # existing project/name ok, do not increment
    half=False,  # use FP16 half-precision inference
    dnn=False,  # use OpenCV DNN for ONNX inference
    model=None,
    dataloader=None,
    criterion=None,
    pbar=None,
):
    # Initialize/load model and set device
    training = model is not None
    if training:  # called by train.py
        device, pt, jit, engine = (
            next(model.parameters()).device,
            True,
            False,
            False,
        )  # get model device, PyTorch model
        half &= device.type != "cpu"  # half precision only supported on CUDA
        model.half() if half else model.float()
    else:  # called directly
        device = select_device(device, batch_size=batch_size)

        # Directories
        save_dir = increment_path(
            Path(project) / name, exist_ok=exist_ok
        )  # increment run
        save_dir.mkdir(parents=True, exist_ok=True)  # make dir

        # Load model
        model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half)
        stride, pt, jit, engine = (
            model.stride,
            model.pt,
            model.jit,
            model.engine,
        )
        imgsz = check_img_size(imgsz, s=stride)  # check image size
        half = model.fp16  # FP16 supported on limited backends with CUDA
        if engine:
            batch_size = model.batch_size
        else:
            device = model.device
            if not (pt or jit):
                batch_size = 1  # export.py models default to batch-size 1
                LOGGER.info(
                    f"Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models"
                )

        # Dataloader
        data = Path(data)
        test_dir = (
            data / "test" if (data / "test").exists() else data / "val"
        )  # data/test or data/val
        dataloader = create_classification_dataloader(
            path=test_dir,
            imgsz=imgsz,
            batch_size=batch_size,
            augment=False,
            rank=-1,
            workers=workers,
        )

    model.eval()
    pred, targets, loss, dt = [], [], 0, (Profile(), Profile(), Profile())
    n = len(dataloader)  # number of batches
    action = (
        "validating" if dataloader.dataset.root.stem == "val" else "testing"
    )
    desc = f"{pbar.desc[:-36]}{action:>36}" if pbar else f"{action}"
    bar = tqdm(
        dataloader,
        desc,
        n,
        not training,
        bar_format=TQDM_BAR_FORMAT,
        position=0,
    )
    with torch.cuda.amp.autocast(enabled=device.type != "cpu"):
        for images, labels in bar:
            with dt[0]:
                images, labels = images.to(
                    device, non_blocking=True
                ), labels.to(device)

            with dt[1]:
                y = model(images)

            with dt[2]:
                pred.append(y.argsort(1, descending=True)[:, :5])
                targets.append(labels)
                if criterion:
                    loss += criterion(y, labels)

    loss /= n
    pred, targets = torch.cat(pred), torch.cat(targets)
    correct = (targets[:, None] == pred).float()
    acc = torch.stack(
        (correct[:, 0], correct.max(1).values), dim=1
    )  # (top1, top5) accuracy
    top1, top5 = acc.mean(0).tolist()

    if pbar:
        pbar.desc = f"{pbar.desc[:-36]}{loss:>12.3g}{top1:>12.3g}{top5:>12.3g}"
    if verbose:  # all classes
        LOGGER.info(
            f"{'Class':>24}{'Images':>12}{'top1_acc':>12}{'top5_acc':>12}"
        )
        LOGGER.info(
            f"{'all':>24}{targets.shape[0]:>12}{top1:>12.3g}{top5:>12.3g}"
        )
        for i, c in model.names.items():
            aci = acc[targets == i]
            top1i, top5i = aci.mean(0).tolist()
            LOGGER.info(
                f"{c:>24}{aci.shape[0]:>12}{top1i:>12.3g}{top5i:>12.3g}"
            )

        # Print results
        t = tuple(
            x.t / len(dataloader.dataset.samples) * 1e3 for x in dt
        )  # speeds per image
        shape = (1, 3, imgsz, imgsz)
        LOGGER.info(
            f"Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}"
            % t
        )
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")

    return top1, top5, loss


def parse_opt():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--data",
        type=str,
        default=ROOT / "../datasets/mnist",
        help="dataset path",
    )
    parser.add_argument(
        "--weights",
        nargs="+",
        type=str,
        default=ROOT / "yolov5s-cls.pt",
        help="model.pt path(s)",
    )
    parser.add_argument(
        "--batch-size", type=int, default=128, help="batch size"
    )
    parser.add_argument(
        "--imgsz",
        "--img",
        "--img-size",
        type=int,
        default=224,
        help="inference size (pixels)",
    )
    parser.add_argument(
        "--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu"
    )
    parser.add_argument(
        "--workers",
        type=int,
        default=8,
        help="max dataloader workers (per RANK in DDP mode)",
    )
    parser.add_argument(
        "--verbose", nargs="?", const=True, default=True, help="verbose output"
    )
    parser.add_argument(
        "--project", default=ROOT / "runs/val-cls", help="save to project/name"
    )
    parser.add_argument("--name", default="exp", help="save to project/name")
    parser.add_argument(
        "--exist-ok",
        action="store_true",
        help="existing project/name ok, do not increment",
    )
    parser.add_argument(
        "--half", action="store_true", help="use FP16 half-precision inference"
    )
    parser.add_argument(
        "--dnn", action="store_true", help="use OpenCV DNN for ONNX inference"
    )
    opt = parser.parse_args()
    print_args(vars(opt))
    return opt


def main(opt):
    check_requirements(exclude=("tensorboard", "thop"))
    run(**vars(opt))


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)