Spaces:
Runtime error
Runtime error
File size: 4,801 Bytes
5b2fcab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Experimental modules
"""
import math
import numpy as np
import torch
import torch.nn as nn
from utils.downloads import attempt_download
class Sum(nn.Module):
# Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
def __init__(self, n, weight=False): # n: number of inputs
super().__init__()
self.weight = weight # apply weights boolean
self.iter = range(n - 1) # iter object
if weight:
self.w = nn.Parameter(
-torch.arange(1.0, n) / 2, requires_grad=True
) # layer weights
def forward(self, x):
y = x[0] # no weight
if self.weight:
w = torch.sigmoid(self.w) * 2
for i in self.iter:
y = y + x[i + 1] * w[i]
else:
for i in self.iter:
y = y + x[i + 1]
return y
class MixConv2d(nn.Module):
# Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
def __init__(
self, c1, c2, k=(1, 3), s=1, equal_ch=True
): # ch_in, ch_out, kernel, stride, ch_strategy
super().__init__()
n = len(k) # number of convolutions
if equal_ch: # equal c_ per group
i = torch.linspace(0, n - 1e-6, c2).floor() # c2 indices
c_ = [(i == g).sum() for g in range(n)] # intermediate channels
else: # equal weight.numel() per group
b = [c2] + [0] * n
a = np.eye(n + 1, n, k=-1)
a -= np.roll(a, 1, axis=1)
a *= np.array(k) ** 2
a[0] = 1
c_ = np.linalg.lstsq(a, b, rcond=None)[
0
].round() # solve for equal weight indices, ax = b
self.m = nn.ModuleList(
[
nn.Conv2d(
c1,
int(c_),
k,
s,
k // 2,
groups=math.gcd(c1, int(c_)),
bias=False,
)
for k, c_ in zip(k, c_)
]
)
self.bn = nn.BatchNorm2d(c2)
self.act = nn.SiLU()
def forward(self, x):
return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
class Ensemble(nn.ModuleList):
# Ensemble of models
def __init__(self):
super().__init__()
def forward(self, x, augment=False, profile=False, visualize=False):
y = [module(x, augment, profile, visualize)[0] for module in self]
# y = torch.stack(y).max(0)[0] # max ensemble
# y = torch.stack(y).mean(0) # mean ensemble
y = torch.cat(y, 1) # nms ensemble
return y, None # inference, train output
def attempt_load(weights, device=None, inplace=True, fuse=True):
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
from models.yolo import Detect, Model
model = Ensemble()
for w in weights if isinstance(weights, list) else [weights]:
ckpt = torch.load(attempt_download(w), map_location="cpu") # load
ckpt = (
(ckpt.get("ema") or ckpt["model"]).to(device).float()
) # FP32 model
# Model compatibility updates
if not hasattr(ckpt, "stride"):
ckpt.stride = torch.tensor([32.0])
if hasattr(ckpt, "names") and isinstance(ckpt.names, (list, tuple)):
ckpt.names = dict(enumerate(ckpt.names)) # convert to dict
model.append(
ckpt.fuse().eval()
if fuse and hasattr(ckpt, "fuse")
else ckpt.eval()
) # model in eval mode
# Module compatibility updates
for m in model.modules():
t = type(m)
if t in (
nn.Hardswish,
nn.LeakyReLU,
nn.ReLU,
nn.ReLU6,
nn.SiLU,
Detect,
Model,
):
m.inplace = inplace # torch 1.7.0 compatibility
if t is Detect and not isinstance(m.anchor_grid, list):
delattr(m, "anchor_grid")
setattr(m, "anchor_grid", [torch.zeros(1)] * m.nl)
elif t is nn.Upsample and not hasattr(m, "recompute_scale_factor"):
m.recompute_scale_factor = None # torch 1.11.0 compatibility
# Return model
if len(model) == 1:
return model[-1]
# Return detection ensemble
print(f"Ensemble created with {weights}\n")
for k in "names", "nc", "yaml":
setattr(model, k, getattr(model[0], k))
model.stride = model[
torch.argmax(torch.tensor([m.stride.max() for m in model])).int()
].stride # max stride
assert all(
model[0].nc == m.nc for m in model
), f"Models have different class counts: {[m.nc for m in model]}"
return model
|