File size: 18,500 Bytes
5b2fcab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Run YOLOv5 segmentation inference on images, videos, directories, streams, etc.

Usage - sources:
    $ python segment/predict.py --weights yolov5s-seg.pt --source 0                               # webcam
                                                                  img.jpg                         # image
                                                                  vid.mp4                         # video
                                                                  screen                          # screenshot
                                                                  path/                           # directory
                                                                  list.txt                        # list of images
                                                                  list.streams                    # list of streams
                                                                  'path/*.jpg'                    # glob
                                                                  'https://youtu.be/Zgi9g1ksQHc'  # YouTube
                                                                  'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream

Usage - formats:
    $ python segment/predict.py --weights yolov5s-seg.pt                 # PyTorch
                                          yolov5s-seg.torchscript        # TorchScript
                                          yolov5s-seg.onnx               # ONNX Runtime or OpenCV DNN with --dnn
                                          yolov5s-seg_openvino_model     # OpenVINO
                                          yolov5s-seg.engine             # TensorRT
                                          yolov5s-seg.mlmodel            # CoreML (macOS-only)
                                          yolov5s-seg_saved_model        # TensorFlow SavedModel
                                          yolov5s-seg.pb                 # TensorFlow GraphDef
                                          yolov5s-seg.tflite             # TensorFlow Lite
                                          yolov5s-seg_edgetpu.tflite     # TensorFlow Edge TPU
                                          yolov5s-seg_paddle_model       # PaddlePaddle
"""

import argparse
import os
import platform
import sys
from pathlib import Path

import torch

FILE = Path(__file__).resolve()
ROOT = FILE.parents[1]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

from models.common import DetectMultiBackend
from utils.dataloaders import (
    IMG_FORMATS,
    VID_FORMATS,
    LoadImages,
    LoadScreenshots,
    LoadStreams,
)
from utils.general import (
    LOGGER,
    Profile,
    check_file,
    check_img_size,
    check_imshow,
    check_requirements,
    colorstr,
    cv2,
    increment_path,
    non_max_suppression,
    print_args,
    scale_boxes,
    scale_segments,
    strip_optimizer,
)
from utils.plots import Annotator, colors, save_one_box
from utils.segment.general import masks2segments, process_mask, process_mask_native
from utils.torch_utils import select_device, smart_inference_mode


@smart_inference_mode()
def run(
    weights=ROOT / "yolov5s-seg.pt",  # model.pt path(s)
    source=ROOT / "data/images",  # file/dir/URL/glob/screen/0(webcam)
    data=ROOT / "data/coco128.yaml",  # dataset.yaml path
    imgsz=(640, 640),  # inference size (height, width)
    conf_thres=0.25,  # confidence threshold
    iou_thres=0.45,  # NMS IOU threshold
    max_det=1000,  # maximum detections per image
    device="",  # cuda device, i.e. 0 or 0,1,2,3 or cpu
    view_img=False,  # show results
    save_txt=False,  # save results to *.txt
    save_conf=False,  # save confidences in --save-txt labels
    save_crop=False,  # save cropped prediction boxes
    nosave=False,  # do not save images/videos
    classes=None,  # filter by class: --class 0, or --class 0 2 3
    agnostic_nms=False,  # class-agnostic NMS
    augment=False,  # augmented inference
    visualize=False,  # visualize features
    update=False,  # update all models
    project=ROOT / "runs/predict-seg",  # save results to project/name
    name="exp",  # save results to project/name
    exist_ok=False,  # existing project/name ok, do not increment
    line_thickness=3,  # bounding box thickness (pixels)
    hide_labels=False,  # hide labels
    hide_conf=False,  # hide confidences
    half=False,  # use FP16 half-precision inference
    dnn=False,  # use OpenCV DNN for ONNX inference
    vid_stride=1,  # video frame-rate stride
    retina_masks=False,
):
    source = str(source)
    save_img = not nosave and not source.endswith(
        ".txt"
    )  # save inference images
    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
    is_url = source.lower().startswith(
        ("rtsp://", "rtmp://", "http://", "https://")
    )
    webcam = (
        source.isnumeric()
        or source.endswith(".streams")
        or (is_url and not is_file)
    )
    screenshot = source.lower().startswith("screen")
    if is_url and is_file:
        source = check_file(source)  # download

    # Directories
    save_dir = increment_path(
        Path(project) / name, exist_ok=exist_ok
    )  # increment run
    (save_dir / "labels" if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True
    )  # make dir

    # Load model
    device = select_device(device)
    model = DetectMultiBackend(
        weights, device=device, dnn=dnn, data=data, fp16=half
    )
    stride, names, pt = model.stride, model.names, model.pt
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Dataloader
    bs = 1  # batch_size
    if webcam:
        view_img = check_imshow(warn=True)
        dataset = LoadStreams(
            source,
            img_size=imgsz,
            stride=stride,
            auto=pt,
            vid_stride=vid_stride,
        )
        bs = len(dataset)
    elif screenshot:
        dataset = LoadScreenshots(
            source, img_size=imgsz, stride=stride, auto=pt
        )
    else:
        dataset = LoadImages(
            source,
            img_size=imgsz,
            stride=stride,
            auto=pt,
            vid_stride=vid_stride,
        )
    vid_path, vid_writer = [None] * bs, [None] * bs

    # Run inference
    model.warmup(imgsz=(1 if pt else bs, 3, *imgsz))  # warmup
    seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
    for path, im, im0s, vid_cap, s in dataset:
        with dt[0]:
            im = torch.from_numpy(im).to(model.device)
            im = im.half() if model.fp16 else im.float()  # uint8 to fp16/32
            im /= 255  # 0 - 255 to 0.0 - 1.0
            if len(im.shape) == 3:
                im = im[None]  # expand for batch dim

        # Inference
        with dt[1]:
            visualize = (
                increment_path(save_dir / Path(path).stem, mkdir=True)
                if visualize
                else False
            )
            pred, proto = model(im, augment=augment, visualize=visualize)[:2]

        # NMS
        with dt[2]:
            pred = non_max_suppression(
                pred,
                conf_thres,
                iou_thres,
                classes,
                agnostic_nms,
                max_det=max_det,
                nm=32,
            )

        # Second-stage classifier (optional)
        # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)

        # Process predictions
        for i, det in enumerate(pred):  # per image
            seen += 1
            if webcam:  # batch_size >= 1
                p, im0, frame = path[i], im0s[i].copy(), dataset.count
                s += f"{i}: "
            else:
                p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # im.jpg
            txt_path = str(save_dir / "labels" / p.stem) + (
                "" if dataset.mode == "image" else f"_{frame}"
            )  # im.txt
            s += "%gx%g " % im.shape[2:]  # print string
            imc = im0.copy() if save_crop else im0  # for save_crop
            annotator = Annotator(
                im0, line_width=line_thickness, example=str(names)
            )
            if len(det):
                if retina_masks:
                    # scale bbox first the crop masks
                    det[:, :4] = scale_boxes(
                        im.shape[2:], det[:, :4], im0.shape
                    ).round()  # rescale boxes to im0 size
                    masks = process_mask_native(
                        proto[i], det[:, 6:], det[:, :4], im0.shape[:2]
                    )  # HWC
                else:
                    masks = process_mask(
                        proto[i],
                        det[:, 6:],
                        det[:, :4],
                        im.shape[2:],
                        upsample=True,
                    )  # HWC
                    det[:, :4] = scale_boxes(
                        im.shape[2:], det[:, :4], im0.shape
                    ).round()  # rescale boxes to im0 size

                # Segments
                if save_txt:
                    segments = [
                        scale_segments(
                            im0.shape if retina_masks else im.shape[2:],
                            x,
                            im0.shape,
                            normalize=True,
                        )
                        for x in reversed(masks2segments(masks))
                    ]

                # Print results
                for c in det[:, 5].unique():
                    n = (det[:, 5] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Mask plotting
                annotator.masks(
                    masks,
                    colors=[colors(x, True) for x in det[:, 5]],
                    im_gpu=torch.as_tensor(im0, dtype=torch.float16)
                    .to(device)
                    .permute(2, 0, 1)
                    .flip(0)
                    .contiguous()
                    / 255
                    if retina_masks
                    else im[i],
                )

                # Write results
                for j, (*xyxy, conf, cls) in enumerate(reversed(det[:, :6])):
                    if save_txt:  # Write to file
                        seg = segments[j].reshape(-1)  # (n,2) to (n*2)
                        line = (
                            (cls, *seg, conf) if save_conf else (cls, *seg)
                        )  # label format
                        with open(f"{txt_path}.txt", "a") as f:
                            f.write(("%g " * len(line)).rstrip() % line + "\n")

                    if save_img or save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = (
                            None
                            if hide_labels
                            else (
                                names[c]
                                if hide_conf
                                else f"{names[c]} {conf:.2f}"
                            )
                        )
                        annotator.box_label(xyxy, label, color=colors(c, True))
                        # annotator.draw.polygon(segments[j], outline=colors(c, True), width=3)
                    if save_crop:
                        save_one_box(
                            xyxy,
                            imc,
                            file=save_dir
                            / "crops"
                            / names[c]
                            / f"{p.stem}.jpg",
                            BGR=True,
                        )

            # Stream results
            im0 = annotator.result()
            if view_img:
                if platform.system() == "Linux" and p not in windows:
                    windows.append(p)
                    cv2.namedWindow(
                        str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO
                    )  # allow window resize (Linux)
                    cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
                cv2.imshow(str(p), im0)
                if cv2.waitKey(1) == ord("q"):  # 1 millisecond
                    exit()

            # Save results (image with detections)
            if save_img:
                if dataset.mode == "image":
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path[i] != save_path:  # new video
                        vid_path[i] = save_path
                        if isinstance(vid_writer[i], cv2.VideoWriter):
                            vid_writer[
                                i
                            ].release()  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                        save_path = str(
                            Path(save_path).with_suffix(".mp4")
                        )  # force *.mp4 suffix on results videos
                        vid_writer[i] = cv2.VideoWriter(
                            save_path,
                            cv2.VideoWriter_fourcc(*"mp4v"),
                            fps,
                            (w, h),
                        )
                    vid_writer[i].write(im0)

        # Print time (inference-only)
        LOGGER.info(
            f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms"
        )

    # Print results
    t = tuple(x.t / seen * 1e3 for x in dt)  # speeds per image
    LOGGER.info(
        f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}"
        % t
    )
    if save_txt or save_img:
        s = (
            f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}"
            if save_txt
            else ""
        )
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
    if update:
        strip_optimizer(
            weights[0]
        )  # update model (to fix SourceChangeWarning)


def parse_opt():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--weights",
        nargs="+",
        type=str,
        default=ROOT / "yolov5s-seg.pt",
        help="model path(s)",
    )
    parser.add_argument(
        "--source",
        type=str,
        default=ROOT / "data/images",
        help="file/dir/URL/glob/screen/0(webcam)",
    )
    parser.add_argument(
        "--data",
        type=str,
        default=ROOT / "data/coco128.yaml",
        help="(optional) dataset.yaml path",
    )
    parser.add_argument(
        "--imgsz",
        "--img",
        "--img-size",
        nargs="+",
        type=int,
        default=[640],
        help="inference size h,w",
    )
    parser.add_argument(
        "--conf-thres", type=float, default=0.25, help="confidence threshold"
    )
    parser.add_argument(
        "--iou-thres", type=float, default=0.45, help="NMS IoU threshold"
    )
    parser.add_argument(
        "--max-det",
        type=int,
        default=1000,
        help="maximum detections per image",
    )
    parser.add_argument(
        "--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu"
    )
    parser.add_argument("--view-img", action="store_true", help="show results")
    parser.add_argument(
        "--save-txt", action="store_true", help="save results to *.txt"
    )
    parser.add_argument(
        "--save-conf",
        action="store_true",
        help="save confidences in --save-txt labels",
    )
    parser.add_argument(
        "--save-crop",
        action="store_true",
        help="save cropped prediction boxes",
    )
    parser.add_argument(
        "--nosave", action="store_true", help="do not save images/videos"
    )
    parser.add_argument(
        "--classes",
        nargs="+",
        type=int,
        help="filter by class: --classes 0, or --classes 0 2 3",
    )
    parser.add_argument(
        "--agnostic-nms", action="store_true", help="class-agnostic NMS"
    )
    parser.add_argument(
        "--augment", action="store_true", help="augmented inference"
    )
    parser.add_argument(
        "--visualize", action="store_true", help="visualize features"
    )
    parser.add_argument(
        "--update", action="store_true", help="update all models"
    )
    parser.add_argument(
        "--project",
        default=ROOT / "runs/predict-seg",
        help="save results to project/name",
    )
    parser.add_argument(
        "--name", default="exp", help="save results to project/name"
    )
    parser.add_argument(
        "--exist-ok",
        action="store_true",
        help="existing project/name ok, do not increment",
    )
    parser.add_argument(
        "--line-thickness",
        default=3,
        type=int,
        help="bounding box thickness (pixels)",
    )
    parser.add_argument(
        "--hide-labels", default=False, action="store_true", help="hide labels"
    )
    parser.add_argument(
        "--hide-conf",
        default=False,
        action="store_true",
        help="hide confidences",
    )
    parser.add_argument(
        "--half", action="store_true", help="use FP16 half-precision inference"
    )
    parser.add_argument(
        "--dnn", action="store_true", help="use OpenCV DNN for ONNX inference"
    )
    parser.add_argument(
        "--vid-stride", type=int, default=1, help="video frame-rate stride"
    )
    parser.add_argument(
        "--retina-masks",
        action="store_true",
        help="whether to plot masks in native resolution",
    )
    opt = parser.parse_args()
    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
    print_args(vars(opt))
    return opt


def main(opt):
    check_requirements(exclude=("tensorboard", "thop"))
    run(**vars(opt))


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)