Spaces:
Runtime error
Runtime error
File size: 7,843 Bytes
5b2fcab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import argparse
import json
import logging
import os
import sys
from pathlib import Path
import comet_ml
logger = logging.getLogger(__name__)
FILE = Path(__file__).resolve()
ROOT = FILE.parents[3] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
from train import train
from utils.callbacks import Callbacks
from utils.general import increment_path
from utils.torch_utils import select_device
# Project Configuration
config = comet_ml.config.get_config()
COMET_PROJECT_NAME = config.get_string(
os.getenv("COMET_PROJECT_NAME"), "comet.project_name", default="yolov5"
)
def get_args(known=False):
parser = argparse.ArgumentParser()
parser.add_argument(
"--weights",
type=str,
default=ROOT / "yolov5s.pt",
help="initial weights path",
)
parser.add_argument("--cfg", type=str, default="", help="model.yaml path")
parser.add_argument(
"--data",
type=str,
default=ROOT / "data/coco128.yaml",
help="dataset.yaml path",
)
parser.add_argument(
"--hyp",
type=str,
default=ROOT / "data/hyps/hyp.scratch-low.yaml",
help="hyperparameters path",
)
parser.add_argument(
"--epochs", type=int, default=300, help="total training epochs"
)
parser.add_argument(
"--batch-size",
type=int,
default=16,
help="total batch size for all GPUs, -1 for autobatch",
)
parser.add_argument(
"--imgsz",
"--img",
"--img-size",
type=int,
default=640,
help="train, val image size (pixels)",
)
parser.add_argument(
"--rect", action="store_true", help="rectangular training"
)
parser.add_argument(
"--resume",
nargs="?",
const=True,
default=False,
help="resume most recent training",
)
parser.add_argument(
"--nosave", action="store_true", help="only save final checkpoint"
)
parser.add_argument(
"--noval", action="store_true", help="only validate final epoch"
)
parser.add_argument(
"--noautoanchor", action="store_true", help="disable AutoAnchor"
)
parser.add_argument(
"--noplots", action="store_true", help="save no plot files"
)
parser.add_argument(
"--evolve",
type=int,
nargs="?",
const=300,
help="evolve hyperparameters for x generations",
)
parser.add_argument("--bucket", type=str, default="", help="gsutil bucket")
parser.add_argument(
"--cache",
type=str,
nargs="?",
const="ram",
help='--cache images in "ram" (default) or "disk"',
)
parser.add_argument(
"--image-weights",
action="store_true",
help="use weighted image selection for training",
)
parser.add_argument(
"--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu"
)
parser.add_argument(
"--multi-scale", action="store_true", help="vary img-size +/- 50%%"
)
parser.add_argument(
"--single-cls",
action="store_true",
help="train multi-class data as single-class",
)
parser.add_argument(
"--optimizer",
type=str,
choices=["SGD", "Adam", "AdamW"],
default="SGD",
help="optimizer",
)
parser.add_argument(
"--sync-bn",
action="store_true",
help="use SyncBatchNorm, only available in DDP mode",
)
parser.add_argument(
"--workers",
type=int,
default=8,
help="max dataloader workers (per RANK in DDP mode)",
)
parser.add_argument(
"--project", default=ROOT / "runs/train", help="save to project/name"
)
parser.add_argument("--name", default="exp", help="save to project/name")
parser.add_argument(
"--exist-ok",
action="store_true",
help="existing project/name ok, do not increment",
)
parser.add_argument("--quad", action="store_true", help="quad dataloader")
parser.add_argument(
"--cos-lr", action="store_true", help="cosine LR scheduler"
)
parser.add_argument(
"--label-smoothing",
type=float,
default=0.0,
help="Label smoothing epsilon",
)
parser.add_argument(
"--patience",
type=int,
default=100,
help="EarlyStopping patience (epochs without improvement)",
)
parser.add_argument(
"--freeze",
nargs="+",
type=int,
default=[0],
help="Freeze layers: backbone=10, first3=0 1 2",
)
parser.add_argument(
"--save-period",
type=int,
default=-1,
help="Save checkpoint every x epochs (disabled if < 1)",
)
parser.add_argument(
"--seed", type=int, default=0, help="Global training seed"
)
parser.add_argument(
"--local_rank",
type=int,
default=-1,
help="Automatic DDP Multi-GPU argument, do not modify",
)
# Weights & Biases arguments
parser.add_argument("--entity", default=None, help="W&B: Entity")
parser.add_argument(
"--upload_dataset",
nargs="?",
const=True,
default=False,
help='W&B: Upload data, "val" option',
)
parser.add_argument(
"--bbox_interval",
type=int,
default=-1,
help="W&B: Set bounding-box image logging interval",
)
parser.add_argument(
"--artifact_alias",
type=str,
default="latest",
help="W&B: Version of dataset artifact to use",
)
# Comet Arguments
parser.add_argument(
"--comet_optimizer_config",
type=str,
help="Comet: Path to a Comet Optimizer Config File.",
)
parser.add_argument(
"--comet_optimizer_id",
type=str,
help="Comet: ID of the Comet Optimizer sweep.",
)
parser.add_argument(
"--comet_optimizer_objective",
type=str,
help="Comet: Set to 'minimize' or 'maximize'.",
)
parser.add_argument(
"--comet_optimizer_metric", type=str, help="Comet: Metric to Optimize."
)
parser.add_argument(
"--comet_optimizer_workers",
type=int,
default=1,
help="Comet: Number of Parallel Workers to use with the Comet Optimizer.",
)
return parser.parse_known_args()[0] if known else parser.parse_args()
def run(parameters, opt):
hyp_dict = {
k: v
for k, v in parameters.items()
if k not in ["epochs", "batch_size"]
}
opt.save_dir = str(
increment_path(
Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve
)
)
opt.batch_size = parameters.get("batch_size")
opt.epochs = parameters.get("epochs")
device = select_device(opt.device, batch_size=opt.batch_size)
train(hyp_dict, opt, device, callbacks=Callbacks())
if __name__ == "__main__":
opt = get_args(known=True)
opt.weights = str(opt.weights)
opt.cfg = str(opt.cfg)
opt.data = str(opt.data)
opt.project = str(opt.project)
optimizer_id = os.getenv("COMET_OPTIMIZER_ID")
if optimizer_id is None:
with open(opt.comet_optimizer_config) as f:
optimizer_config = json.load(f)
optimizer = comet_ml.Optimizer(optimizer_config)
else:
optimizer = comet_ml.Optimizer(optimizer_id)
opt.comet_optimizer_id = optimizer.id
status = optimizer.status()
opt.comet_optimizer_objective = status["spec"]["objective"]
opt.comet_optimizer_metric = status["spec"]["metric"]
logger.info("COMET INFO: Starting Hyperparameter Sweep")
for parameter in optimizer.get_parameters():
run(parameter["parameters"], opt)
|