Abhinav Gavireddi
fix: fixed bugs in UI
04db7e0
"""
Generic Pre-Processing Pipeline (GPP) for Document Intelligence
This module handles:
1. Parsing PDFs via MinerU Python API (OCR/text modes)
2. Extracting markdown, images, and content_list JSON
3. Chunking multimodal content (text, tables, images), ensuring tables/images are in single chunks
4. Parsing markdown tables into JSON 2D structures for dense tables
5. Narration of tables/images via LLM
6. Semantic enhancements (deduplication, coreference, metadata summarization)
7. Embedding computation for in-memory use
Each step is modular to support swapping components (e.g. different parsers or stores).
"""
import os
import json
from typing import List, Dict, Any, Optional
import re
from magic_pdf.data.data_reader_writer import FileBasedDataWriter, FileBasedDataReader
from magic_pdf.data.dataset import PymuDocDataset
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
from magic_pdf.config.enums import SupportedPdfParseMethod
from langchain.text_splitter import RecursiveCharacterTextSplitter
from sentence_transformers import SentenceTransformer
from rank_bm25 import BM25Okapi
import numpy as np
import hnswlib
from src.config import EmbeddingConfig
from src.utils import OpenAIEmbedder
# LLM client abstraction
from src.utils import LLMClient, logger
def parse_markdown_table(md: str) -> Optional[Dict[str, Any]]:
"""
Parses a markdown table into a JSON-like dict:
{ headers: [...], rows: [[...], ...] }
Handles multi-level headers by nesting lists if needed.
"""
lines = [l for l in md.strip().splitlines() if l.strip().startswith("|")]
if len(lines) < 2:
return None
header_line = lines[0]
sep_line = lines[1]
# Validate separator line
if not re.match(r"^\|?\s*:?-+:?\s*(\|\s*:?-+:?\s*)+\|?", sep_line):
return None
def split_row(line):
parts = [cell.strip() for cell in line.strip().strip("|").split("|")]
return parts
headers = split_row(header_line)
rows = [split_row(r) for r in lines[2:]]
return {"headers": headers, "rows": rows}
class GPPConfig:
"""
Configuration for GPP pipeline.
"""
CHUNK_TOKEN_SIZE = 256
DEDUP_SIM_THRESHOLD = 0.9
EXPANSION_SIM_THRESHOLD = 0.85
COREF_CONTEXT_SIZE = 3
HNSW_EF_CONSTRUCTION = int(os.getenv("HNSW_EF_CONSTRUCTION", "200"))
HNSW_M = int(os.getenv("HNSW_M", "16"))
HNSW_EF_SEARCH = int(os.getenv("HNSW_EF_SEARCH", "50"))
class GPP:
def __init__(self, config: GPPConfig):
self.config = config
# Embedding models
if EmbeddingConfig.PROVIDER == "openai":
self.text_embedder = OpenAIEmbedder(EmbeddingConfig.TEXT_MODEL)
self.meta_embedder = OpenAIEmbedder(EmbeddingConfig.META_MODEL)
else:
self.text_embedder = SentenceTransformer(
EmbeddingConfig.TEXT_MODEL, use_auth_token=True
)
self.meta_embedder = SentenceTransformer(
EmbeddingConfig.META_MODEL, use_auth_token=True
)
self.bm25 = None
def parse_pdf(self, pdf_path: str, output_dir: str) -> Dict[str, Any]:
"""
Uses MinerU API to parse PDF in OCR/text mode,
dumps markdown, images, layout PDF, content_list JSON.
Returns parsed data plus file paths for UI traceability.
"""
name = os.path.splitext(os.path.basename(pdf_path))[0]
img_dir = os.path.join(output_dir, "images")
os.makedirs(img_dir, exist_ok=True)
os.makedirs(output_dir, exist_ok=True)
writer_imgs = FileBasedDataWriter(img_dir)
writer_md = FileBasedDataWriter(output_dir)
reader = FileBasedDataReader("")
pdf_bytes = reader.read(pdf_path)
ds = PymuDocDataset(pdf_bytes)
if ds.classify() == SupportedPdfParseMethod.OCR:
infer = ds.apply(doc_analyze, ocr=True)
pipe = infer.pipe_ocr_mode(writer_imgs)
else:
infer = ds.apply(doc_analyze, ocr=False)
pipe = infer.pipe_txt_mode(writer_imgs)
# Visual layout
pipe.draw_layout(os.path.join(output_dir, f"{name}_layout.pdf"))
# Dump markdown & JSON
pipe.dump_md(writer_md, f"{name}.md", os.path.basename(img_dir))
pipe.dump_content_list(
writer_md, f"{name}_content_list.json", os.path.basename(img_dir)
)
content_list_path = os.path.join(output_dir, f"{name}_content_list.json")
with open(content_list_path, "r", encoding="utf-8") as f:
blocks = json.load(f)
# UI traceability paths
return {
"blocks": blocks,
"md_path": os.path.join(output_dir, f"{name}.md"),
"images_dir": img_dir,
"layout_pdf": os.path.join(output_dir, f"{name}_layout.pdf"),
"spans_pdf": os.path.join(output_dir, f"{name}_spans.pdf"),
}
def chunk_blocks(self, blocks: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
Creates chunks of ~CHUNK_TOKEN_SIZE tokens, but ensures any table/image block
becomes its own chunk (unsplittable), flushing current text chunk as needed.
"""
chunks, current, token_count = [], {"text": "", "type": None, "blocks": []}, 0
for blk in blocks:
btype = blk.get("type")
text = blk.get("text", "")
if btype in ("table", "img_path"):
# Flush existing text chunk
if current["blocks"]:
chunks.append(current)
current = {"text": "", "type": None, "blocks": []}
token_count = 0
# Create isolated chunk for the table/image
tbl_chunk = {"text": text, "type": btype, "blocks": [blk]}
# Parse markdown table into JSON structure if applicable
if btype == "table":
tbl_struct = parse_markdown_table(text)
tbl_chunk["table_structure"] = tbl_struct
chunks.append(tbl_chunk)
continue
# Standard text accumulation
count = len(text.split())
if token_count + count > self.config.CHUNK_TOKEN_SIZE and current["blocks"]:
chunks.append(current)
current = {"text": "", "type": None, "blocks": []}
token_count = 0
current["text"] += text + "\n"
current["type"] = current["type"] or btype
current["blocks"].append(blk)
token_count += count
# Flush remaining
if current["blocks"]:
chunks.append(current)
logger.info(f"Chunked into {len(chunks)} pieces (with tables/images isolated).")
return chunks
def narrate_multimodal(self, chunks: List[Dict[str, Any]]) -> None:
"""
For table/image chunks, generate LLM narration. Preserve table_structure in metadata.
"""
for c in chunks:
if c["type"] in ("table", "img_path"):
prompt = f"Describe this {c['type']} concisely:\n{c['text']}"
c["narration"] = LLMClient.generate(prompt)
else:
c["narration"] = c["text"]
def deduplicate(self, chunks: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
try:
# embs = self.text_embedder.encode([c.get('narration', '') for c in chunks], convert_to_tensor=True)
narrations = [c.get("narration", "") for c in chunks]
if EmbeddingConfig.PROVIDER == "openai":
embs = self.text_embedder.embed(narrations)
else:
embs = self.text_embedder.encode(narrations)
keep = []
for i, emb in enumerate(embs):
if not any(
(emb @ embs[j]).item()
/ (np.linalg.norm(emb) * np.linalg.norm(embs[j]) + 1e-8)
> self.config.DEDUP_SIM_THRESHOLD
for j in keep
):
keep.append(i)
deduped = [chunks[i] for i in keep]
logger.info(f"Deduplicated: {len(chunks)}{len(deduped)}")
return deduped
except Exception as e:
logger.error(f"Deduplication failed: {e}")
return chunks
def coref_resolution(self, chunks: List[Dict[str, Any]]) -> None:
for idx, c in enumerate(chunks):
start = max(0, idx - self.config.COREF_CONTEXT_SIZE)
ctx = "\n".join(chunks[i].get("narration", "") for i in range(start, idx))
prompt = f"Context:\n{ctx}\nRewrite pronouns in:\n{c.get('narration', '')}"
try:
c["narration"] = LLMClient.generate(prompt)
except Exception as e:
logger.error(f"Coref resolution failed for chunk {idx}: {e}")
def metadata_summarization(self, chunks: List[Dict[str, Any]]) -> None:
sections: Dict[str, List[Dict[str, Any]]] = {}
for c in chunks:
sec = c.get("section", "default")
sections.setdefault(sec, []).append(c)
for sec, items in sections.items():
blob = "\n".join(i.get("narration", "") for i in items)
try:
summ = LLMClient.generate(f"Summarize this section:\n{blob}")
for i in items:
i.setdefault("metadata", {})["section_summary"] = summ
except Exception as e:
logger.error(f"Metadata summarization failed for section {sec}: {e}")
def build_bm25(self, chunks: List[Dict[str, Any]]) -> None:
"""
Build BM25 index on token lists for sparse retrieval.
"""
tokenized = [c["narration"].split() for c in chunks]
self.bm25 = BM25Okapi(tokenized)
def compute_and_store(self, chunks: List[Dict[str, Any]], output_dir: str) -> None:
"""
1. Compute embeddings for each chunk's narration (text_vec)
and section_summary (meta_vec).
2. Build two HNSWlib indices (one for text_vecs, one for meta_vecs).
3. Save both indices to disk.
4. Dump human-readable chunk metadata (incl. section_summary)
for traceability in the UI.
"""
# --- 1. Prepare embedder ---
if EmbeddingConfig.PROVIDER.lower() == "openai":
embedder = OpenAIEmbedder(EmbeddingConfig.TEXT_MODEL)
embed_fn = embedder.embed
else:
st_model = SentenceTransformer(
EmbeddingConfig.TEXT_MODEL, use_auth_token=True
)
embed_fn = lambda texts: st_model.encode(
texts, show_progress_bar=False
).tolist()
# Batch compute text & meta embeddings ---
narrations = [c["narration"] for c in chunks]
meta_texts = [c.get("section_summary", "") for c in chunks]
logger.info(
"computing_embeddings",
provider=EmbeddingConfig.PROVIDER,
num_chunks=len(chunks),
)
text_vecs = embed_fn(narrations)
meta_vecs = embed_fn(meta_texts)
if len(text_vecs) != len(chunks) or len(meta_vecs) != len(chunks):
raise RuntimeError(
f"Embedding count mismatch: text_vecs={len(text_vecs)}, meta_vecs={len(meta_vecs)}, chunks={len(chunks)}"
)
# Convert to numpy arrays
text_matrix = np.vstack(text_vecs).astype(np.float32)
meta_matrix = np.vstack(meta_vecs).astype(np.float32)
# Build HNSW indices ---
dim = text_matrix.shape[1]
text_index = hnswlib.Index(space="cosine", dim=dim)
text_index.init_index(
max_elements=len(chunks),
ef_construction=GPPConfig.HNSW_EF_CONSTRUCTION,
M=GPPConfig.HNSW_M,
)
ids = [c["id"] for c in chunks]
text_index.add_items(text_matrix, ids)
text_index.set_ef(GPPConfig.HNSW_EF_SEARCH)
logger.info("text_hnsw_built", elements=len(chunks))
# Meta index (same dim)
meta_index = hnswlib.Index(space="cosine", dim=dim)
meta_index.init_index(
max_elements=len(chunks),
ef_construction=GPPConfig.HNSW_EF_CONSTRUCTION,
M=GPPConfig.HNSW_M,
)
meta_index.add_items(meta_matrix, ids)
meta_index.set_ef(GPPConfig.HNSW_EF_SEARCH)
logger.info("meta_hnsw_built", elements=len(chunks))
# Persist indices to disk ---
text_idx_path = os.path.join(output_dir, "hnsw_text_index.bin")
meta_idx_path = os.path.join(output_dir, "hnsw_meta_index.bin")
text_index.save_index(text_idx_path)
meta_index.save_index(meta_idx_path)
logger.info(
"hnsw_indices_saved", text_index=text_idx_path, meta_index=meta_idx_path
)
# Dump chunk metadata for UI traceability ---
meta_path = os.path.join(output_dir, "chunk_metadata.json")
metadata = {
str(c["id"]): {
"text": c.get("text", ""),
"narration": c["narration"],
"type": c.get("type", ""),
"section_summary": c.get("section_summary", ""),
}
for c in chunks
}
with open(meta_path, "w", encoding="utf-8") as f:
json.dump(metadata, f, ensure_ascii=False, indent=2)
logger.info("chunk_metadata_saved", path=meta_path)
def run(self, pdf_path: str, output_dir: str) -> Dict[str, Any]:
"""
Executes full GPP: parse -> chunk -> narrate -> enhance -> index.
Returns parse output dict augmented with `chunks` for downstream processes.
"""
parsed = self.parse_pdf(pdf_path, output_dir)
blocks = parsed.get("blocks", [])
chunks = self.chunk_blocks(blocks)
# assigning ID's to chuncks for traceability
for idx, chunk in enumerate(chunks):
chunk["id"] = idx
self.narrate_multimodal(chunks)
chunks = self.deduplicate(chunks)
self.coref_resolution(chunks)
self.metadata_summarization(chunks)
self.build_bm25(chunks)
self.compute_and_store(chunks, output_dir)
parsed["chunks"] = chunks
logger.info("GPP pipeline complete.")
return parsed