""" Utilities module: LLM client wrapper and shared helpers. """ import os import openai from typing import List from openai import AzureOpenAI from langchain_openai import AzureOpenAIEmbeddings try: from src.utils import logger except ImportError: import structlog logger = structlog.get_logger() class LLMClient: """ Simple wrapper around OpenAI (or any other) LLM API. Reads API key from environment and exposes `generate(prompt)`. """ @staticmethod def generate(prompt: str, model: str = None, max_tokens: int = 512, **kwargs) -> str: azure_api_key = os.getenv('AZURE_API_KEY') azure_endpoint = os.getenv('AZURE_ENDPOINT') azure_api_version = os.getenv('AZURE_API_VERSION') openai_model_name = model or os.getenv('OPENAI_MODEL', 'gpt-4o') if not (azure_api_key or azure_endpoint or azure_api_version or openai_model_name): logger.error('OPENAI_API_KEY is not set') raise EnvironmentError('Missing OPENAI_API_KEY') client = AzureOpenAI( api_key=azure_api_key, azure_endpoint=azure_endpoint, api_version=azure_api_version ) try: resp = client.chat.completions.create( model=openai_model_name, messages=[{"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt}], max_tokens=max_tokens, temperature=0.0, **kwargs ) text = resp.choices[0].message.content.strip() return text except Exception as e: logger.exception('LLM generation failed') raise class OpenAIEmbedder: """ Wrapper around OpenAI Embeddings API. Usage: embedder = OpenAIEmbedder(model_name) embs = embedder.embed([str1, str2, ...]) """ def __init__(self, model_name: str): self.model = model_name openai.api_key = os.getenv("OPENAI_API_KEY") def embed(self, texts: List[str]) -> List[List[float]]: embeddings = AzureOpenAIEmbeddings(model=self.model) resp = embeddings.embed_documents(texts) # return list of embedding vectors return resp