abhi.2000 / app.py
Abhisesh7's picture
Update app.py
15e48a5 verified
raw
history blame
3.93 kB
import yfinance as yf
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
import matplotlib.pyplot as plt
import gradio as gr
# Fetch stock data from Yahoo Finance
def get_stock_data(ticker, start_date, end_date):
stock_data = yf.download(ticker, start=start_date, end=end_date)
if stock_data.empty:
raise ValueError("No data found for the given ticker and date range.")
return stock_data
# Preprocess stock data
def preprocess_data(stock_data):
scaler = MinMaxScaler(feature_range=(0, 1)) # Normalizing the close prices
scaled_data = scaler.fit_transform(stock_data[['Close']].values)
return scaled_data, scaler
# Define and train an LSTM model
def create_lstm_model(input_shape):
model = Sequential()
model.add(LSTM(units=50, return_sequences=True, input_shape=input_shape))
model.add(LSTM(units=50))
model.add(Dense(units=1)) # Predicting stock price
model.compile(optimizer='adam', loss='mean_squared_error')
return model
# Prepare data for training the model
def train_model(stock_data, window_size=60):
X_train, y_train = [], []
for i in range(window_size, len(stock_data)):
X_train.append(stock_data[i-window_size:i, 0])
y_train.append(stock_data[i, 0])
X_train, y_train = np.array(X_train), np.array(y_train)
X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], 1))
model = create_lstm_model((X_train.shape[1], 1))
model.fit(X_train, y_train, epochs=10, batch_size=32)
return model
# Predict future stock prices
def predict_future_prices(model, scaler, recent_data, days_to_predict=90):
predictions = []
input_data = recent_data[-60:].reshape(1, 60, 1)
for _ in range(days_to_predict):
pred_price = model.predict(input_data)[0, 0]
predictions.append(pred_price)
input_data = np.append(input_data[:, 1:, :], [[pred_price]], axis=1)
predicted_prices = scaler.inverse_transform(np.array(predictions).reshape(-1, 1))
return predicted_prices
# Gradio function to predict stock prices and display results
def stock_prediction_app(ticker, start_date, end_date):
stock_data = get_stock_data(ticker, start_date, end_date)
scaled_data, scaler = preprocess_data(stock_data)
# Train the model on the selected stock data
model = train_model(scaled_data)
# Make predictions for the next 90 days
future_prices = predict_future_prices(model, scaler, scaled_data)
# Plot the historical and future stock prices
plt.figure(figsize=(10, 6))
plt.plot(stock_data.index, stock_data['Close'], label='Historical Prices')
future_dates = pd.date_range(end=stock_data.index[-1], periods=90)
plt.plot(future_dates, future_prices, label='Predicted Prices', linestyle='--')
plt.title(f'{ticker} Stock Price Prediction')
plt.xlabel('Date')
plt.ylabel('Price')
plt.legend()
plt.savefig('stock_prediction.png')
return f"The predicted stock price for the next 3 months is shown in the graph.", 'stock_prediction.png'
# Define Gradio interface
tickers = ['AAPL', 'MSFT', 'GOOGL', 'TSLA', 'AMZN', 'FB', 'NFLX', 'NVDA', 'INTC', 'IBM']
app = gr.Blocks()
with app:
gr.Markdown("# Stock Buy/Sell Prediction App")
ticker = gr.Dropdown(tickers, label="Select Stock Ticker")
start_date = gr.inputs.DatePicker(label="Start Date") # Use DatePicker for selecting dates
end_date = gr.inputs.DatePicker(label="End Date") # Use DatePicker for selecting dates
predict_button = gr.Button("Predict")
output_text = gr.Textbox(label="Prediction Result")
output_image = gr.Image(label="Stock Price Graph")
predict_button.click(fn=stock_prediction_app, inputs=[ticker, start_date, end_date], outputs=[output_text, output_image])
app.launch()