Update app.py
Browse files
app.py
CHANGED
@@ -1,96 +1,100 @@
|
|
1 |
-
import
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
-
import
|
5 |
-
from sklearn.preprocessing import MinMaxScaler
|
6 |
-
import gradio as gr
|
7 |
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
8 |
|
9 |
-
# Define stock tickers
|
10 |
tickers = ['AAPL', 'MSFT', 'GOOGL', 'TSLA', 'AMZN', 'FB', 'NFLX', 'NVDA', 'INTC', 'IBM']
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
# Fetch historical stock data from Yahoo Finance
|
15 |
-
stock_data = yf.download(ticker, start=start_date, end=end_date)
|
16 |
-
|
17 |
-
# Check if data is fetched correctly
|
18 |
-
if stock_data.empty:
|
19 |
-
return "No data available for the selected date range.", None
|
20 |
-
|
21 |
-
# Prepare the data for LSTM model
|
22 |
-
df_close = stock_data[['Close']] # Use only the 'Close' column for prediction
|
23 |
scaler = MinMaxScaler(feature_range=(0, 1))
|
24 |
-
scaled_data = scaler.fit_transform(
|
25 |
-
|
26 |
-
# Create datasets for training the LSTM model
|
27 |
-
def create_dataset(data, time_step=60):
|
28 |
-
X_train, y_train = [], []
|
29 |
-
for i in range(len(data)-time_step-1):
|
30 |
-
X_train.append(data[i:(i+time_step), 0])
|
31 |
-
y_train.append(data[i + time_step, 0])
|
32 |
-
return np.array(X_train), np.array(y_train)
|
33 |
|
34 |
-
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
|
38 |
|
|
|
|
|
|
|
39 |
# Define LSTM model
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
# Train the model
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
#
|
54 |
-
|
55 |
-
|
|
|
|
|
56 |
|
57 |
-
#
|
58 |
plt.figure(figsize=(10, 5))
|
59 |
-
plt.plot(
|
60 |
-
plt.
|
61 |
plt.title(f'{ticker} Stock Price Prediction')
|
62 |
-
plt.xlabel('
|
63 |
-
plt.ylabel('
|
64 |
plt.legend()
|
|
|
65 |
|
66 |
-
# Save the plot
|
67 |
-
plt.savefig(
|
|
|
68 |
|
69 |
-
|
70 |
-
return f"Prediction complete for {ticker} from {start_date} to {end_date}", 'stock_prediction_plot.png'
|
71 |
|
72 |
-
#
|
73 |
app = gr.Blocks()
|
74 |
|
75 |
with app:
|
76 |
gr.Markdown("# Stock Buy/Sell Prediction App")
|
77 |
|
78 |
-
# Dropdown for stock tickers
|
79 |
ticker = gr.Dropdown(tickers, label="Select Stock Ticker")
|
80 |
-
|
81 |
-
# Textboxes for manual date input
|
82 |
start_date = gr.Textbox(label="Start Date (YYYY-MM-DD)")
|
83 |
end_date = gr.Textbox(label="End Date (YYYY-MM-DD)")
|
84 |
|
85 |
-
# Button to trigger the prediction
|
86 |
predict_button = gr.Button("Predict")
|
87 |
|
88 |
-
|
89 |
-
output_text = gr.Textbox(label="Prediction Result")
|
90 |
output_image = gr.Image(label="Stock Price Graph")
|
91 |
|
92 |
-
# Set up button click event to run the prediction function
|
93 |
predict_button.click(fn=stock_prediction_app, inputs=[ticker, start_date, end_date], outputs=[output_text, output_image])
|
94 |
|
95 |
-
# Launch the Gradio app
|
96 |
app.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
+
import yfinance as yf
|
|
|
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
+
from sklearn.preprocessing import MinMaxScaler
|
7 |
+
from tensorflow.keras.models import Sequential
|
8 |
+
from tensorflow.keras.layers import LSTM, Dense
|
9 |
|
10 |
+
# Define the available stock tickers
|
11 |
tickers = ['AAPL', 'MSFT', 'GOOGL', 'TSLA', 'AMZN', 'FB', 'NFLX', 'NVDA', 'INTC', 'IBM']
|
12 |
|
13 |
+
def train_model(data):
|
14 |
+
# Prepare data for LSTM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
scaler = MinMaxScaler(feature_range=(0, 1))
|
16 |
+
scaled_data = scaler.fit_transform(data['Close'].values.reshape(-1, 1))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
# Create training data
|
19 |
+
train_data = []
|
20 |
+
for i in range(60, len(scaled_data)):
|
21 |
+
train_data.append(scaled_data[i-60:i, 0])
|
22 |
|
23 |
+
train_data = np.array(train_data)
|
|
|
24 |
|
25 |
+
# Reshape data for LSTM
|
26 |
+
X_train = train_data.reshape((train_data.shape[0], train_data.shape[1], 1))
|
27 |
+
|
28 |
# Define LSTM model
|
29 |
+
model = Sequential()
|
30 |
+
model.add(LSTM(50, return_sequences=True, input_shape=(X_train.shape[1], 1)))
|
31 |
+
model.add(LSTM(50, return_sequences=False))
|
32 |
+
model.add(Dense(25))
|
33 |
+
model.add(Dense(1))
|
34 |
+
|
35 |
+
# Compile model
|
36 |
+
model.compile(optimizer='adam', loss='mean_squared_error')
|
37 |
+
model.fit(X_train, np.array(data['Close'][60:]), batch_size=1, epochs=1)
|
38 |
+
|
39 |
+
return model, scaler
|
40 |
+
|
41 |
+
def stock_prediction_app(ticker, start_date, end_date):
|
42 |
+
# Fetch stock data
|
43 |
+
data = yf.download(ticker, start=start_date, end=end_date)
|
44 |
+
if data.empty:
|
45 |
+
return "No data found for the selected dates.", None
|
46 |
|
47 |
# Train the model
|
48 |
+
model, scaler = train_model(data)
|
49 |
+
|
50 |
+
# Predict future prices
|
51 |
+
last_60_days = data['Close'][-60:].values.reshape(-1, 1)
|
52 |
+
last_60_days_scaled = scaler.transform(last_60_days)
|
53 |
+
X_test = []
|
54 |
+
X_test.append(last_60_days_scaled)
|
55 |
+
X_test = np.array(X_test).reshape((1, X_test.shape[1], 1))
|
56 |
+
|
57 |
+
# Predicting the price
|
58 |
+
predicted_price = model.predict(X_test)
|
59 |
+
predicted_price = scaler.inverse_transform(predicted_price)
|
60 |
|
61 |
+
# Calculate additional information
|
62 |
+
current_price = data['Close'].iloc[-1]
|
63 |
+
highest_price = data['Close'].max()
|
64 |
+
lowest_price = data['Close'].min()
|
65 |
+
percentage_change = ((predicted_price[0][0] - current_price) / current_price) * 100
|
66 |
|
67 |
+
# Plotting historical and predicted prices
|
68 |
plt.figure(figsize=(10, 5))
|
69 |
+
plt.plot(data['Close'], label='Historical Prices')
|
70 |
+
plt.axhline(y=predicted_price[0][0], color='r', linestyle='--', label='Predicted Price')
|
71 |
plt.title(f'{ticker} Stock Price Prediction')
|
72 |
+
plt.xlabel('Date')
|
73 |
+
plt.ylabel('Price')
|
74 |
plt.legend()
|
75 |
+
plt.grid()
|
76 |
|
77 |
+
# Save the plot
|
78 |
+
plt.savefig("predicted_stock_price.png")
|
79 |
+
plt.close()
|
80 |
|
81 |
+
return f"Predicted Price: ${predicted_price[0][0]:.2f}\nCurrent Price: ${current_price:.2f}\nPercentage Change: {percentage_change:.2f}%\nHighest Price: ${highest_price:.2f}\nLowest Price: ${lowest_price:.2f}", "predicted_stock_price.png"
|
|
|
82 |
|
83 |
+
# Gradio UI
|
84 |
app = gr.Blocks()
|
85 |
|
86 |
with app:
|
87 |
gr.Markdown("# Stock Buy/Sell Prediction App")
|
88 |
|
|
|
89 |
ticker = gr.Dropdown(tickers, label="Select Stock Ticker")
|
|
|
|
|
90 |
start_date = gr.Textbox(label="Start Date (YYYY-MM-DD)")
|
91 |
end_date = gr.Textbox(label="End Date (YYYY-MM-DD)")
|
92 |
|
|
|
93 |
predict_button = gr.Button("Predict")
|
94 |
|
95 |
+
output_text = gr.Textbox(label="Prediction Result", interactive=False)
|
|
|
96 |
output_image = gr.Image(label="Stock Price Graph")
|
97 |
|
|
|
98 |
predict_button.click(fn=stock_prediction_app, inputs=[ticker, start_date, end_date], outputs=[output_text, output_image])
|
99 |
|
|
|
100 |
app.launch()
|