Update app.py
Browse files
app.py
CHANGED
@@ -2,93 +2,221 @@ import yfinance as yf
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
import tensorflow as tf
|
5 |
-
import
|
6 |
import matplotlib.pyplot as plt
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
def fetch_data(ticker, start_date, end_date):
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
data = yf.download(ticker, start=start_date, end=end_date)
|
12 |
return data
|
13 |
|
14 |
-
def
|
15 |
-
|
16 |
-
|
17 |
-
scaled_data = scaler.fit_transform(data['Close'].values.reshape(-1, 1))
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
return model
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
52 |
plt.xlabel('Date')
|
53 |
-
plt.ylabel('
|
|
|
54 |
plt.legend()
|
55 |
-
plt.
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
last_60_days = data['Close'].values[-60:]
|
65 |
-
predicted_price = predict_next_days(model, last_60_days, scaler)
|
66 |
-
|
67 |
-
# Calculate percentage change, highest, and lowest
|
68 |
-
percentage_change = ((data['Close'][-1] - data['Close'][0]) / data['Close'][0]) * 100
|
69 |
-
highest_value = data['Close'].max()
|
70 |
-
lowest_value = data['Close'].min()
|
71 |
-
|
72 |
-
plot_graph(data, predicted_price)
|
73 |
-
|
74 |
-
return {
|
75 |
-
"Predicted Price": predicted_price,
|
76 |
-
"Percentage Change": percentage_change,
|
77 |
-
"Highest Value": highest_value,
|
78 |
-
"Lowest Value": lowest_value,
|
79 |
}
|
80 |
|
81 |
-
|
82 |
-
stock_tickers = ["AAPL", "MSFT", "GOOGL", "AMZN", "TSLA", "FB", "NFLX", "NVDA", "INTC", "AMD"]
|
83 |
|
84 |
-
|
85 |
-
|
|
|
86 |
inputs=[
|
87 |
-
gr.Dropdown(choices=
|
88 |
-
gr.DatePicker(label="Start Date"),
|
89 |
-
gr.DatePicker(label="End Date")
|
90 |
],
|
91 |
-
outputs=
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
import tensorflow as tf
|
5 |
+
from tensorflow.keras import layers, models
|
6 |
import matplotlib.pyplot as plt
|
7 |
+
import gradio as gr
|
8 |
+
from datetime import datetime, timedelta
|
9 |
+
|
10 |
+
# Ensure matplotlib does not require a display environment
|
11 |
+
import matplotlib
|
12 |
+
matplotlib.use('Agg')
|
13 |
+
|
14 |
+
# Define the stock tickers
|
15 |
+
STOCK_TICKERS = [
|
16 |
+
'AAPL', 'GOOGL', 'MSFT', 'AMZN', 'TSLA',
|
17 |
+
'FB', 'NVDA', 'JPM', 'V', 'DIS'
|
18 |
+
]
|
19 |
|
20 |
def fetch_data(ticker, start_date, end_date):
|
21 |
+
"""
|
22 |
+
Fetch historical stock data from yfinance.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
ticker (str): Stock ticker symbol.
|
26 |
+
start_date (str): Start date in 'YYYY-MM-DD'.
|
27 |
+
end_date (str): End date in 'YYYY-MM-DD'.
|
28 |
+
|
29 |
+
Returns:
|
30 |
+
pd.DataFrame: Historical stock data.
|
31 |
+
"""
|
32 |
data = yf.download(ticker, start=start_date, end=end_date)
|
33 |
return data
|
34 |
|
35 |
+
def preprocess_data(data):
|
36 |
+
"""
|
37 |
+
Preprocess the stock data for model training.
|
|
|
38 |
|
39 |
+
Args:
|
40 |
+
data (pd.DataFrame): Raw stock data.
|
41 |
+
|
42 |
+
Returns:
|
43 |
+
np.ndarray, np.ndarray: Features and labels.
|
44 |
+
"""
|
45 |
+
# Calculate moving averages
|
46 |
+
data['MA10'] = data['Close'].rolling(window=10).mean()
|
47 |
+
data['MA20'] = data['Close'].rolling(window=20).mean()
|
48 |
+
|
49 |
+
# Drop NaN values
|
50 |
+
data = data.dropna()
|
51 |
+
|
52 |
+
# Features: Close, MA10, MA20
|
53 |
+
features = data[['Close', 'MA10', 'MA20']].values
|
54 |
+
|
55 |
+
# Labels: 1 if next day's Close > today's Close, else 0
|
56 |
+
data['Target'] = np.where(data['Close'].shift(-1) > data['Close'], 1, 0)
|
57 |
+
labels = data['Target'].values[:-1]
|
58 |
+
features = features[:-1]
|
59 |
+
|
60 |
+
return features, labels
|
61 |
+
|
62 |
+
def build_model(input_shape):
|
63 |
+
"""
|
64 |
+
Build and compile the TensorFlow model.
|
65 |
+
|
66 |
+
Args:
|
67 |
+
input_shape (int): Number of features.
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
tf.keras.Model: Compiled model.
|
71 |
+
"""
|
72 |
+
model = models.Sequential([
|
73 |
+
layers.Dense(64, activation='relu', input_shape=(input_shape,)),
|
74 |
+
layers.Dense(32, activation='relu'),
|
75 |
+
layers.Dense(1, activation='sigmoid') # Binary classification
|
76 |
+
])
|
77 |
+
|
78 |
+
model.compile(optimizer='adam',
|
79 |
+
loss='binary_crossentropy',
|
80 |
+
metrics=['accuracy'])
|
81 |
return model
|
82 |
|
83 |
+
# Train the model for each stock ticker and store in a dictionary
|
84 |
+
models_dict = {}
|
85 |
+
|
86 |
+
for ticker in STOCK_TICKERS:
|
87 |
+
# Fetch data for the past 5 years
|
88 |
+
end = datetime.today()
|
89 |
+
start = end - timedelta(days=5*365)
|
90 |
+
data = fetch_data(ticker, start.strftime('%Y-%m-%d'), end.strftime('%Y-%m-%d'))
|
91 |
+
|
92 |
+
if data.empty:
|
93 |
+
print(f"No data found for {ticker}. Skipping...")
|
94 |
+
continue
|
95 |
|
96 |
+
features, labels = preprocess_data(data)
|
97 |
+
model = build_model(features.shape[1])
|
98 |
+
model.fit(features, labels, epochs=10, batch_size=32, verbose=0)
|
99 |
+
|
100 |
+
models_dict[ticker] = model
|
101 |
+
print(f"Model trained for {ticker}")
|
102 |
+
|
103 |
+
def predict_stock(ticker, start_date, end_date):
|
104 |
+
"""
|
105 |
+
Predict whether to Buy or Sell the stock based on user input.
|
106 |
+
|
107 |
+
Args:
|
108 |
+
ticker (str): Selected stock ticker.
|
109 |
+
start_date (str): Training start date.
|
110 |
+
end_date (str): Training end date.
|
111 |
+
|
112 |
+
Returns:
|
113 |
+
dict: Prediction results and graph.
|
114 |
+
"""
|
115 |
+
# Fetch data
|
116 |
+
data = fetch_data(ticker, start_date, end_date)
|
117 |
+
|
118 |
+
if data.empty:
|
119 |
+
return {
|
120 |
+
"Percentage Change": "No data available for the selected dates.",
|
121 |
+
"Highest Price": "N/A",
|
122 |
+
"Lowest Price": "N/A",
|
123 |
+
"Prediction": "N/A",
|
124 |
+
"Graph": None
|
125 |
+
}
|
126 |
+
|
127 |
+
# Preprocess data
|
128 |
+
features, labels = preprocess_data(data)
|
129 |
+
|
130 |
+
if features.size == 0:
|
131 |
+
return {
|
132 |
+
"Percentage Change": "Insufficient data after preprocessing.",
|
133 |
+
"Highest Price": "N/A",
|
134 |
+
"Lowest Price": "N/A",
|
135 |
+
"Prediction": "N/A",
|
136 |
+
"Graph": None
|
137 |
+
}
|
138 |
+
|
139 |
+
# Get the latest features for prediction
|
140 |
+
latest_data = data[['Close', 'MA10', 'MA20']].values[-1].reshape(1, -1)
|
141 |
+
|
142 |
+
# Predict using the trained model
|
143 |
+
model = models_dict.get(ticker)
|
144 |
+
if not model:
|
145 |
+
return {
|
146 |
+
"Percentage Change": "Model not found for the selected ticker.",
|
147 |
+
"Highest Price": "N/A",
|
148 |
+
"Lowest Price": "N/A",
|
149 |
+
"Prediction": "N/A",
|
150 |
+
"Graph": None
|
151 |
+
}
|
152 |
+
|
153 |
+
prediction = model.predict(latest_data)
|
154 |
+
prediction_label = "Buy" if prediction[0][0] > 0.5 else "Sell"
|
155 |
+
|
156 |
+
# Calculate percentage change
|
157 |
+
start_close = data['Close'].iloc[0]
|
158 |
+
latest_close = data['Close'].iloc[-1]
|
159 |
+
percent_change = ((latest_close - start_close) / start_close) * 100
|
160 |
+
|
161 |
+
# Highest and Lowest values
|
162 |
+
highest = data['Close'].max()
|
163 |
+
lowest = data['Close'].min()
|
164 |
+
|
165 |
+
# Plot historical data
|
166 |
+
plt.figure(figsize=(10,5))
|
167 |
+
plt.plot(data.index, data['Close'], label='Historical Close')
|
168 |
|
169 |
+
# Predict future 3 months (approx 63 trading days)
|
170 |
+
future_days = 63
|
171 |
+
# For simplicity, we'll extend the latest close with random walk
|
172 |
+
future_prices = [latest_close]
|
173 |
+
for _ in range(future_days):
|
174 |
+
change_percent = np.random.uniform(-0.02, 0.02) # Simulate small changes
|
175 |
+
new_price = future_prices[-1] * (1 + change_percent)
|
176 |
+
future_prices.append(new_price)
|
177 |
+
|
178 |
+
future_dates = pd.date_range(data.index[-1] + timedelta(days=1), periods=future_days+1, freq='B')
|
179 |
+
plt.plot(future_dates, future_prices[1:], label='Predicted Close')
|
180 |
plt.xlabel('Date')
|
181 |
+
plt.ylabel('Price')
|
182 |
+
plt.title(f'{ticker} Historical and Predicted Performance')
|
183 |
plt.legend()
|
184 |
+
plt.tight_layout()
|
185 |
+
plt.savefig('performance.png')
|
186 |
+
plt.close()
|
187 |
|
188 |
+
# Prepare the result
|
189 |
+
result = {
|
190 |
+
"Percentage Change": f"{percent_change:.2f}%",
|
191 |
+
"Highest Price": f"${highest:.2f}",
|
192 |
+
"Lowest Price": f"${lowest:.2f}",
|
193 |
+
"Prediction": prediction_label,
|
194 |
+
"Graph": 'performance.png'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
}
|
196 |
|
197 |
+
return result
|
|
|
198 |
|
199 |
+
# Define Gradio Interface
|
200 |
+
iface = gr.Interface(
|
201 |
+
fn=predict_stock,
|
202 |
inputs=[
|
203 |
+
gr.Dropdown(choices=STOCK_TICKERS, label="Select Stock Ticker"),
|
204 |
+
gr.DatePicker(label="Start Date"),
|
205 |
+
gr.DatePicker(label="End Date")
|
206 |
],
|
207 |
+
outputs=[
|
208 |
+
gr.Textbox(label="Percentage Change"),
|
209 |
+
gr.Textbox(label="Highest Price"),
|
210 |
+
gr.Textbox(label="Lowest Price"),
|
211 |
+
gr.Textbox(label="Buy/Sell Prediction"),
|
212 |
+
gr.Image(label="Performance Graph")
|
213 |
+
],
|
214 |
+
title="📈 Stock Buy/Sell Prediction App",
|
215 |
+
description=(
|
216 |
+
"Select a stock ticker and a date range to predict whether to **Buy** or **Sell** the stock. "
|
217 |
+
"View the percentage change, highest and lowest prices, and a performance graph."
|
218 |
+
)
|
219 |
+
)
|
220 |
+
|
221 |
+
# Launch the app
|
222 |
+
iface.launch()
|