Update app.py
Browse files
app.py
CHANGED
@@ -1,204 +1,107 @@
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import yfinance as yf
|
3 |
-
import numpy as np
|
4 |
import pandas as pd
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
-
from sklearn.linear_model import LinearRegression
|
7 |
-
import matplotlib
|
8 |
-
matplotlib.use('Agg') # Use non-interactive backend
|
9 |
-
|
10 |
-
# Date validation function
|
11 |
-
def validate_date(date_text):
|
12 |
-
try:
|
13 |
-
pd.to_datetime(date_text)
|
14 |
-
return True
|
15 |
-
except ValueError:
|
16 |
-
return False
|
17 |
|
18 |
-
# Function to fetch data
|
19 |
def fetch_data(ticker, start_date, end_date):
|
20 |
-
#
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
# Convert input dates from strings to pandas datetime
|
25 |
-
start_date = pd.to_datetime(start_date)
|
26 |
-
end_date = pd.to_datetime(end_date)
|
27 |
-
|
28 |
-
stock_data = yf.download(ticker, start=start_date, end=end_date)
|
29 |
-
|
30 |
-
if stock_data.empty:
|
31 |
-
return f"No data found for ticker {ticker} in the specified date range.", None
|
32 |
-
|
33 |
-
return stock_data
|
34 |
-
|
35 |
-
# Function to predict future prices
|
36 |
-
def predict_stock(ticker, start_date, end_date):
|
37 |
-
stock_data = fetch_data(ticker, start_date, end_date)
|
38 |
-
|
39 |
-
if isinstance(stock_data, str): # In case of an error message from fetch_data
|
40 |
-
return stock_data, None
|
41 |
-
|
42 |
-
stock_data['Date'] = pd.to_datetime(stock_data.index)
|
43 |
-
stock_data['Days'] = (stock_data['Date'] - stock_data['Date'].min()).dt.days
|
44 |
-
|
45 |
-
X = stock_data['Days'].values.reshape(-1, 1)
|
46 |
-
y = stock_data['Close'].values
|
47 |
-
|
48 |
-
model = LinearRegression()
|
49 |
-
model.fit(X, y)
|
50 |
-
|
51 |
-
future_days = np.array(range(stock_data['Days'].max() + 1, stock_data['Days'].max() + 90)).reshape(-1, 1)
|
52 |
-
future_prices = model.predict(future_days)
|
53 |
-
|
54 |
-
return future_prices, stock_data
|
55 |
-
|
56 |
-
# Function to visualize stock data
|
57 |
-
def plot_stock_data(ticker, start_date, end_date):
|
58 |
-
future_prices, stock_data = predict_stock(ticker, start_date, end_date)
|
59 |
-
|
60 |
-
if isinstance(future_prices, str): # In case of an error message
|
61 |
-
return future_prices
|
62 |
-
|
63 |
-
plt.figure(figsize=(10, 6))
|
64 |
-
plt.plot(stock_data['Date'], stock_data['Close'], label="Historical Prices")
|
65 |
-
future_dates = pd.date_range(stock_data['Date'].max() + pd.Timedelta(days=1), periods=90)
|
66 |
-
plt.plot(future_dates, future_prices, label="Predicted Future Prices")
|
67 |
-
|
68 |
-
plt.title(f"{ticker} Stock Price Prediction")
|
69 |
-
plt.xlabel("Date")
|
70 |
-
plt.ylabel("Price")
|
71 |
-
plt.legend()
|
72 |
-
plt.grid(True)
|
73 |
-
|
74 |
-
return plt.gcf()
|
75 |
-
|
76 |
-
# Gradio Interface
|
77 |
-
def stock_prediction_interface(ticker, start_date, end_date):
|
78 |
-
stock_data = fetch_data(ticker, start_date, end_date)
|
79 |
-
|
80 |
-
if isinstance(stock_data, str): # If there was an error fetching data
|
81 |
-
return stock_data, None
|
82 |
-
|
83 |
-
price_change = (stock_data['Close'].iloc[-1] - stock_data['Close'].iloc[0]) / stock_data['Close'].iloc[0] * 100
|
84 |
-
highest_price = stock_data['High'].max()
|
85 |
-
lowest_price = stock_data['Low'].min()
|
86 |
-
|
87 |
-
future_prices, _ = predict_stock(ticker, start_date, end_date)
|
88 |
-
|
89 |
-
if isinstance(future_prices, str): # If there was an error in prediction
|
90 |
-
return future_prices, None
|
91 |
-
|
92 |
-
decision = "Buy" if future_prices[-1] > stock_data['Close'].iloc[-1] else "Sell"
|
93 |
-
|
94 |
-
graph = plot_stock_data(ticker, start_date, end_date)
|
95 |
-
|
96 |
-
if isinstance(graph, str): # If there was an error in plotting
|
97 |
-
return graph, None
|
98 |
-
|
99 |
-
return f"Percentage Change: {price_change:.2f}%\nHighest Price: {highest_price}\nLowest Price: {lowest_price}\nDecision: {decision}", graph
|
100 |
-
|
101 |
-
# Gradio app UI
|
102 |
-
ticker_list = ['AAPL', 'GOOGL', 'MSFT', 'AMZN', 'TSLA', 'META', 'NFLX', 'NVDA', 'BABA', 'INTC']
|
103 |
|
104 |
-
#
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
end_date_input = gr.components.Textbox(label="End Date (YYYY-MM-DD)", placeholder="e.g. 2023-12-31")
|
109 |
-
|
110 |
-
output_text = gr.components.Textbox(label="Prediction Results")
|
111 |
-
output_plot = gr.components.Plot(label="Stock Price Plot")
|
112 |
-
|
113 |
-
gr.components.Button("Predict").click(
|
114 |
-
stock_prediction_interface,
|
115 |
-
inputs=[ticker_input, start_date_input, end_date_input],
|
116 |
-
outputs=[output_text, output_plot]
|
117 |
-
)
|
118 |
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
import matplotlib.pyplot as plt
|
121 |
|
122 |
-
def
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
# Check lengths of future_dates and future_prices
|
131 |
-
print(f"Length of future_dates: {len(future_dates)}")
|
132 |
-
print(f"Length of future_prices: {len(future_prices)}")
|
133 |
-
|
134 |
-
# Ensure they are the same length
|
135 |
-
min_length = min(len(future_dates), len(future_prices))
|
136 |
-
future_dates = future_dates[:min_length]
|
137 |
-
future_prices = future_prices[:min_length]
|
138 |
-
|
139 |
-
# Plot historical stock data
|
140 |
-
plt.figure(figsize=(10, 5))
|
141 |
-
plt.plot(stock_data.index, stock_data['Close'], label="Historical Prices")
|
142 |
-
|
143 |
-
# Plot future predicted prices
|
144 |
-
plt.plot(future_dates, future_prices, label="Predicted Future Prices", linestyle='--')
|
145 |
-
|
146 |
-
plt.xlabel("Date")
|
147 |
-
plt.ylabel("Stock Price")
|
148 |
-
plt.title(f"{ticker} Stock Price Prediction")
|
149 |
plt.legend()
|
150 |
-
plt.grid(True)
|
151 |
-
|
152 |
plt.show()
|
153 |
-
return plt.gcf() # Return the current figure object
|
154 |
-
import matplotlib.pyplot as plt
|
155 |
-
import pandas as pd
|
156 |
-
|
157 |
-
def plot_stock_data(ticker, start_date, end_date):
|
158 |
-
# Fetch stock data and make predictions...
|
159 |
-
stock_data = fetch_data(ticker, start_date, end_date)
|
160 |
-
|
161 |
-
# Example future dates (change this according to your actual future date range logic)
|
162 |
-
future_dates = pd.date_range(end_date, periods=90, freq='D') # Generates 90 future dates
|
163 |
-
future_prices = model_predict(stock_data) # Generates 89 future prices (example)
|
164 |
-
|
165 |
-
# Ensure both future_dates and future_prices have the same length
|
166 |
-
min_length = min(len(future_dates), len(future_prices))
|
167 |
-
future_dates = future_dates[:min_length]
|
168 |
-
future_prices = future_prices[:min_length]
|
169 |
-
|
170 |
-
# Plot historical stock data
|
171 |
-
plt.figure(figsize=(10, 5))
|
172 |
-
plt.plot(stock_data.index, stock_data['Close'], label="Historical Prices")
|
173 |
-
|
174 |
-
# Plot future predicted prices
|
175 |
-
plt.plot(future_dates, future_prices, label="Predicted Future Prices", linestyle='--')
|
176 |
-
|
177 |
-
# Add labels and title
|
178 |
-
plt.xlabel("Date")
|
179 |
-
plt.ylabel("Stock Price")
|
180 |
-
plt.title(f"{ticker} Stock Price Prediction")
|
181 |
-
plt.legend()
|
182 |
-
plt.grid(True)
|
183 |
-
|
184 |
-
# Show the plot
|
185 |
-
plt.show()
|
186 |
-
|
187 |
-
return plt.gcf() # Return the current figure object for Gradio to display
|
188 |
-
print(f"Future dates length: {len(future_dates)}")
|
189 |
-
print(f"Future prices length: {len(future_prices)}")
|
190 |
-
def plot_stock_data(ticker, start_date, end_date):
|
191 |
-
# Your existing code to fetch data and make predictions...
|
192 |
-
|
193 |
-
# Check lengths of future_dates and future_prices
|
194 |
-
print(f"Future dates length: {len(future_dates)}")
|
195 |
-
print(f"Future prices length: {len(future_prices)}")
|
196 |
-
|
197 |
-
# Ensure they match
|
198 |
-
if len(future_dates) != len(future_prices):
|
199 |
-
raise ValueError("The length of future_dates and future_prices must match.")
|
200 |
-
|
201 |
-
plt.plot(future_dates, future_prices, label="Predicted Future Prices")
|
202 |
-
# Additional plotting code...
|
203 |
-
|
204 |
|
|
|
|
1 |
+
import sys
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import tensorflow as tf
|
5 |
import gradio as gr
|
6 |
+
|
7 |
+
print(f"Python version: {sys.version}")
|
8 |
+
print(f"Pandas version: {pd.__version__}")
|
9 |
+
print(f"Numpy version: {np.__version__}")
|
10 |
+
print(f"TensorFlow version: {tf.__version__}")
|
11 |
+
print(f"Gradio version: {gr.__version__}")
|
12 |
import yfinance as yf
|
|
|
13 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
|
|
15 |
def fetch_data(ticker, start_date, end_date):
|
16 |
+
# Fetch historical data for the given ticker symbol
|
17 |
+
data = yf.download(ticker, start=start_date, end=end_date)
|
18 |
+
return data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# Example usage
|
21 |
+
# data = fetch_data("AAPL", "2023-01-01", "2023-10-01")
|
22 |
+
from sklearn.preprocessing import MinMaxScaler
|
23 |
+
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
def prepare_data(data):
|
26 |
+
# Preprocessing
|
27 |
+
scaler = MinMaxScaler(feature_range=(0, 1))
|
28 |
+
scaled_data = scaler.fit_transform(data['Close'].values.reshape(-1, 1))
|
29 |
+
|
30 |
+
x_train, y_train = [], []
|
31 |
+
for i in range(60, len(scaled_data)):
|
32 |
+
x_train.append(scaled_data[i-60:i, 0])
|
33 |
+
y_train.append(scaled_data[i, 0])
|
34 |
+
|
35 |
+
return np.array(x_train), np.array(y_train), scaler
|
36 |
+
|
37 |
+
def create_model(input_shape):
|
38 |
+
model = tf.keras.Sequential()
|
39 |
+
model.add(tf.keras.layers.LSTM(units=50, return_sequences=True, input_shape=input_shape))
|
40 |
+
model.add(tf.keras.layers.LSTM(units=50, return_sequences=False))
|
41 |
+
model.add(tf.keras.layers.Dense(units=25))
|
42 |
+
model.add(tf.keras.layers.Dense(units=1)) # Output layer
|
43 |
+
model.compile(optimizer='adam', loss='mean_squared_error')
|
44 |
+
return model
|
45 |
+
|
46 |
+
# Example usage
|
47 |
+
# x_train, y_train, scaler = prepare_data(data)
|
48 |
+
# model = create_model((x_train.shape[1], 1))
|
49 |
+
# model.fit(x_train, y_train, batch_size=1, epochs=1)
|
50 |
+
def predict_next_days(model, last_60_days, scaler):
|
51 |
+
last_60_days = np.array(last_60_days).reshape(-1, 1)
|
52 |
+
last_60_days_scaled = scaler.transform(last_60_days)
|
53 |
+
|
54 |
+
X_test = []
|
55 |
+
X_test.append(last_60_days_scaled)
|
56 |
+
X_test = np.array(X_test)
|
57 |
+
|
58 |
+
predicted_price = model.predict(X_test)
|
59 |
+
predicted_price = scaler.inverse_transform(predicted_price) # Reverse scaling
|
60 |
+
return predicted_price[0][0]
|
61 |
+
def stock_prediction(ticker, start_date, end_date):
|
62 |
+
data = fetch_data(ticker, start_date, end_date)
|
63 |
+
x_train, y_train, scaler = prepare_data(data)
|
64 |
+
model = create_model((x_train.shape[1], 1))
|
65 |
+
model.fit(x_train, y_train, batch_size=1, epochs=1)
|
66 |
+
|
67 |
+
# Make predictions
|
68 |
+
last_60_days = data['Close'].values[-60:]
|
69 |
+
predicted_price = predict_next_days(model, last_60_days, scaler)
|
70 |
+
|
71 |
+
# Calculate percentage change, highest, and lowest
|
72 |
+
percentage_change = ((data['Close'][-1] - data['Close'][0]) / data['Close'][0]) * 100
|
73 |
+
highest_value = data['Close'].max()
|
74 |
+
lowest_value = data['Close'].min()
|
75 |
+
|
76 |
+
return {
|
77 |
+
"Predicted Price": predicted_price,
|
78 |
+
"Percentage Change": percentage_change,
|
79 |
+
"Highest Value": highest_value,
|
80 |
+
"Lowest Value": lowest_value,
|
81 |
+
}
|
82 |
+
|
83 |
+
# UI setup
|
84 |
+
stock_tickers = ["AAPL", "MSFT", "GOOGL", "AMZN", "TSLA", "FB", "NFLX", "NVDA", "INTC", "AMD"]
|
85 |
+
|
86 |
+
gr.Interface(
|
87 |
+
fn=stock_prediction,
|
88 |
+
inputs=[
|
89 |
+
gr.Dropdown(choices=stock_tickers, label="Stock Ticker"),
|
90 |
+
gr.Date(label="Start Date"),
|
91 |
+
gr.Date(label="End Date"),
|
92 |
+
],
|
93 |
+
outputs=["json"],
|
94 |
+
).launch()
|
95 |
import matplotlib.pyplot as plt
|
96 |
|
97 |
+
def plot_graph(data, predicted_prices):
|
98 |
+
plt.figure(figsize=(14, 5))
|
99 |
+
plt.plot(data['Close'], label='Historical Prices', color='blue')
|
100 |
+
plt.plot(predicted_prices, label='Predicted Prices', color='red')
|
101 |
+
plt.title('Stock Price Prediction')
|
102 |
+
plt.xlabel('Date')
|
103 |
+
plt.ylabel('Stock Price')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
plt.legend()
|
|
|
|
|
105 |
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
# Call this function in your `stock_prediction` function to plot the graph
|