Update app.py
Browse files
app.py
CHANGED
@@ -1,97 +1,111 @@
|
|
1 |
-
import yfinance as yf
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
-
import
|
5 |
from sklearn.preprocessing import MinMaxScaler
|
|
|
|
|
6 |
import gradio as gr
|
7 |
import matplotlib.pyplot as plt
|
|
|
8 |
|
9 |
-
#
|
10 |
-
|
|
|
|
|
11 |
|
12 |
-
#
|
13 |
-
def
|
14 |
-
#
|
15 |
-
|
16 |
-
|
17 |
-
# Check if data is fetched correctly
|
18 |
-
if stock_data.empty:
|
19 |
-
return "No data available for the selected date range.", None
|
20 |
-
|
21 |
-
# Prepare the data for LSTM model
|
22 |
-
df_close = stock_data[['Close']] # Use only the 'Close' column for prediction
|
23 |
scaler = MinMaxScaler(feature_range=(0, 1))
|
24 |
-
scaled_data = scaler.fit_transform(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
#
|
27 |
-
|
28 |
-
X_train, y_train = [], []
|
29 |
-
for i in range(len(data)-time_step-1):
|
30 |
-
X_train.append(data[i:(i+time_step), 0])
|
31 |
-
y_train.append(data[i + time_step, 0])
|
32 |
-
return np.array(X_train), np.array(y_train)
|
33 |
|
34 |
-
|
35 |
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
tf.keras.layers.LSTM(50, return_sequences=True, input_shape=(60, 1)),
|
42 |
-
tf.keras.layers.LSTM(50, return_sequences=False),
|
43 |
-
tf.keras.layers.Dense(25),
|
44 |
-
tf.keras.layers.Dense(1)
|
45 |
-
])
|
46 |
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
plt.
|
60 |
-
plt.plot(
|
61 |
-
|
62 |
-
plt.
|
63 |
-
plt.
|
|
|
|
|
64 |
plt.legend()
|
65 |
-
|
66 |
-
|
67 |
-
plt.
|
|
|
|
|
68 |
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
#
|
73 |
-
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
ticker = gr.Dropdown(tickers, label="Select Stock Ticker")
|
80 |
-
|
81 |
-
# Textboxes for manual date input
|
82 |
-
start_date = gr.Textbox(label="Start Date (YYYY-MM-DD)")
|
83 |
-
end_date = gr.Textbox(label="End Date (YYYY-MM-DD)")
|
84 |
-
|
85 |
-
# Button to trigger the prediction
|
86 |
-
predict_button = gr.Button("Predict")
|
87 |
-
|
88 |
-
# Output fields for text and image
|
89 |
-
output_text = gr.Textbox(label="Prediction Result")
|
90 |
-
output_image = gr.Image(label="Stock Price Graph")
|
91 |
-
|
92 |
-
# Set up button click event to run the prediction function
|
93 |
-
predict_button.click(fn=stock_prediction_app, inputs=[ticker, start_date, end_date], outputs=[output_text, output_image])
|
94 |
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
97 |
|
|
|
|
|
|
1 |
import numpy as np
|
2 |
import pandas as pd
|
3 |
+
import yfinance as yf
|
4 |
from sklearn.preprocessing import MinMaxScaler
|
5 |
+
from tensorflow.keras.models import Sequential
|
6 |
+
from tensorflow.keras.layers import LSTM, Dense, Dropout
|
7 |
import gradio as gr
|
8 |
import matplotlib.pyplot as plt
|
9 |
+
from datetime import datetime, timedelta
|
10 |
|
11 |
+
# Fetch historical stock data
|
12 |
+
def fetch_data(ticker, start_date, end_date):
|
13 |
+
data = yf.download(ticker, start=start_date, end=end_date)
|
14 |
+
return data
|
15 |
|
16 |
+
# Preprocess data
|
17 |
+
def preprocess_data(data):
|
18 |
+
# Use only the 'Close' prices for prediction
|
19 |
+
data = data[['Close']]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
scaler = MinMaxScaler(feature_range=(0, 1))
|
21 |
+
scaled_data = scaler.fit_transform(data)
|
22 |
+
|
23 |
+
# Prepare training data
|
24 |
+
x_train, y_train = [], []
|
25 |
+
for i in range(60, len(scaled_data)):
|
26 |
+
x_train.append(scaled_data[i-60:i, 0])
|
27 |
+
y_train.append(scaled_data[i, 0])
|
28 |
+
x_train, y_train = np.array(x_train), np.array(y_train)
|
29 |
|
30 |
+
# Reshape for LSTM [samples, time steps, features]
|
31 |
+
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
return x_train, y_train, scaler
|
34 |
|
35 |
+
# Build the LSTM model
|
36 |
+
def build_model():
|
37 |
+
model = Sequential()
|
38 |
+
model.add(LSTM(units=50, return_sequences=True, input_shape=(60, 1)))
|
39 |
+
model.add(Dropout(0.2))
|
40 |
+
model.add(LSTM(units=50, return_sequences=False))
|
41 |
+
model.add(Dropout(0.2))
|
42 |
+
model.add(Dense(units=25))
|
43 |
+
model.add(Dense(units=1)) # Output layer for price prediction
|
44 |
+
model.compile(optimizer='adam', loss='mean_squared_error')
|
45 |
+
return model
|
46 |
+
|
47 |
+
# Train the model
|
48 |
+
def train_model(ticker, start_date, end_date):
|
49 |
+
data = fetch_data(ticker, start_date, end_date)
|
50 |
+
x_train, y_train, scaler = preprocess_data(data)
|
51 |
|
52 |
+
model = build_model()
|
53 |
+
model.fit(x_train, y_train, batch_size=1, epochs=1)
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
return model, scaler, data
|
56 |
+
|
57 |
+
# Predict the stock price for tomorrow
|
58 |
+
def predict_next_day(model, scaler, data):
|
59 |
+
last_60_days = data['Close'][-60:].values
|
60 |
+
last_60_days_scaled = scaler.transform(last_60_days.reshape(-1, 1))
|
61 |
|
62 |
+
x_test = []
|
63 |
+
x_test.append(last_60_days_scaled)
|
64 |
+
x_test = np.array(x_test)
|
65 |
+
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1))
|
66 |
|
67 |
+
predicted_price = model.predict(x_test)
|
68 |
+
predicted_price = scaler.inverse_transform(predicted_price) # Convert back to original scale
|
69 |
+
return predicted_price[0][0]
|
70 |
|
71 |
+
# Create a graph of historical and predicted prices
|
72 |
+
def create_graph(data, predicted_price):
|
73 |
+
plt.figure(figsize=(14, 5))
|
74 |
+
plt.plot(data.index, data['Close'], label='Historical Prices', color='blue')
|
75 |
+
tomorrow = datetime.now() + timedelta(days=1)
|
76 |
+
plt.scatter(tomorrow, predicted_price, label='Predicted Price for Tomorrow', color='red')
|
77 |
+
plt.title('Stock Price Prediction')
|
78 |
+
plt.xlabel('Date')
|
79 |
+
plt.ylabel('Price')
|
80 |
plt.legend()
|
81 |
+
plt.grid()
|
82 |
+
plt.xticks(rotation=45)
|
83 |
+
plt.tight_layout()
|
84 |
+
plt.savefig('/mnt/data/stock_prediction_graph.png') # Save the graph
|
85 |
+
plt.close()
|
86 |
|
87 |
+
# Gradio Interface
|
88 |
+
def stock_prediction_app(ticker, start_date, end_date):
|
89 |
+
model, scaler, data = train_model(ticker, start_date, end_date)
|
90 |
+
predicted_price = predict_next_day(model, scaler, data)
|
91 |
+
create_graph(data, predicted_price)
|
92 |
+
|
93 |
+
return f'The predicted stock price for tomorrow is ${predicted_price:.2f}', '/mnt/data/stock_prediction_graph.png'
|
94 |
|
95 |
+
# Stock tickers for dropdown
|
96 |
+
stock_tickers = ['AAPL', 'MSFT', 'GOOGL', 'AMZN', 'FB', 'TSLA', 'NFLX', 'NVDA', 'INTC', 'AMD']
|
97 |
|
98 |
+
# Create Gradio Interface
|
99 |
+
ticker_input = gr.Dropdown(choices=stock_tickers, label="Select Stock Ticker")
|
100 |
+
start_date_input = gr.Date(label="Start Date")
|
101 |
+
end_date_input = gr.Date(label="End Date")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
iface = gr.Interface(
|
104 |
+
fn=stock_prediction_app,
|
105 |
+
inputs=[ticker_input, start_date_input, end_date_input],
|
106 |
+
outputs=["text", "image"],
|
107 |
+
title="Stock Price Prediction App",
|
108 |
+
description="Predict tomorrow's stock price based on historical data.",
|
109 |
+
)
|
110 |
|
111 |
+
iface.launch()
|