# Step 1: Install Required Libraries # Uncomment and run this if you haven't installed these packages yet. # !pip install pandas numpy matplotlib yfinance tensorflow scikit-learn # Step 2: Import Required Libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import yfinance as yf from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense, Dropout from datetime import datetime, timedelta # Step 3: Load and Preprocess Data def load_data(ticker, start_date, end_date): # Fetch data from Yahoo Finance data = yf.download(ticker, start=start_date, end=end_date) data = data[['Close']] # We only need the closing prices return data def preprocess_data(data): # Scale the data scaler = MinMaxScaler(feature_range=(0, 1)) scaled_data = scaler.fit_transform(data) # Create training data training_data_len = int(np.ceil(len(scaled_data) * .8)) # 80% for training train_data = scaled_data[0:training_data_len, :] # Create the dataset with X_train and y_train x_train, y_train = [], [] for i in range(60, len(train_data)): x_train.append(train_data[i-60:i, 0]) y_train.append(train_data[i, 0]) x_train, y_train = np.array(x_train), np.array(y_train) x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1)) # Reshape for LSTM return x_train, y_train, scaler, training_data_len, scaled_data # Step 4: Build the LSTM Model def build_model(input_shape): model = Sequential() model.add(LSTM(50, return_sequences=True, input_shape=input_shape)) model.add(Dropout(0.2)) model.add(LSTM(50, return_sequences=False)) model.add(Dropout(0.2)) model.add(Dense(25)) model.add(Dense(1)) # Prediction of the next closing price model.compile(optimizer='adam', loss='mean_squared_error') return model # Step 5: Train the Model def train_model(model, x_train, y_train, epochs=10, batch_size=1): model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs) # Step 6: Make Predictions def make_predictions(model, scaled_data, training_data_len, scaler): # Create the test dataset test_data = scaled_data[training_data_len - 60:, :] x_test = [] for i in range(60, len(test_data)): x_test.append(test_data[i-60:i, 0]) x_test = np.array(x_test) # Reshape the data x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1)) # Get the predicted price predictions = model.predict(x_test) predictions = scaler.inverse_transform(predictions) # Inverse scaling return predictions # Step 7: Visualize the Results def visualize_results(data, predictions): train = data[:len(data) - len(predictions)] valid = data[len(data) - len(predictions):] valid['Predictions'] = predictions # Plotting plt.figure(figsize=(16, 8)) plt.title('Model') plt.xlabel('Date') plt.ylabel('Close Price USD') plt.plot(train['Close']) plt.plot(valid[['Close', 'Predictions']]) plt.legend(['Train', 'Val', 'Predictions'], loc='lower right') plt.show() # Example Usage if __name__ == "__main__": # Set parameters ticker = "AAPL" # Example ticker (Apple Inc.) start_date = "2020-01-01" end_date = datetime.now().strftime("%Y-%m-%d") # Load data data = load_data(ticker, start_date, end_date) # Preprocess data x_train, y_train, scaler, training_data_len, scaled_data = preprocess_data(data) # Build and train the model model = build_model((x_train.shape[1], 1)) train_model(model, x_train, y_train, epochs=50) # Make predictions predictions = make_predictions(model, scaled_data, training_data_len, scaler) # Visualize results visualize_results(data, predictions)