Added application file
Browse files
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
|
5 |
+
# Load the model and tokenizer
|
6 |
+
model, tokenizer = (
|
7 |
+
AutoModelForCausalLM.from_pretrained("Abhishekcr448/Tiny-Hinglish-Chat-21M"),
|
8 |
+
AutoTokenizer.from_pretrained("Abhishekcr448/Tiny-Hinglish-Chat-21M"),
|
9 |
+
)
|
10 |
+
|
11 |
+
# Function to generate text (suggestions)
|
12 |
+
def generate_text(prompt, output_length):
|
13 |
+
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
|
14 |
+
generated_output = model.generate(
|
15 |
+
inputs['input_ids'],
|
16 |
+
max_length=inputs['input_ids'].shape[-1] + output_length, # Generate 10 more tokens
|
17 |
+
no_repeat_ngram_size=2,
|
18 |
+
temperature=0.8,
|
19 |
+
top_k=50,
|
20 |
+
top_p=0.9,
|
21 |
+
do_sample=True,
|
22 |
+
)
|
23 |
+
output_text = tokenizer.decode(generated_output[0], skip_special_tokens=True)
|
24 |
+
return output_text
|
25 |
+
|
26 |
+
|
27 |
+
# Set up the Gradio interface
|
28 |
+
with gr.Blocks() as demo:
|
29 |
+
|
30 |
+
# Add a chat interface above the text boxes
|
31 |
+
with gr.Column(scale=4):
|
32 |
+
chatbox = gr.Chatbot(label="Chat", type="messages")
|
33 |
+
|
34 |
+
with gr.Row():
|
35 |
+
# Create a column for the two text boxes
|
36 |
+
with gr.Column(scale=3):
|
37 |
+
# Input text box for user input (first column)
|
38 |
+
input_text = gr.Textbox(label="Enter your message", interactive=True)
|
39 |
+
|
40 |
+
# Response text box (second column)
|
41 |
+
response_text = gr.Textbox(label="Response", interactive=False)
|
42 |
+
|
43 |
+
# Create a separate column for the button
|
44 |
+
with gr.Column(scale=1):
|
45 |
+
# Button placed beside the text boxes
|
46 |
+
replace_button = gr.Button("Replace Text", elem_id="replace-btn")
|
47 |
+
|
48 |
+
# Set up the interaction between input and output
|
49 |
+
def validate_and_generate(prompt, output_length=4):
|
50 |
+
if prompt.strip():
|
51 |
+
return generate_text(prompt, output_length)
|
52 |
+
|
53 |
+
input_text.input(validate_and_generate, inputs=input_text, outputs=response_text)
|
54 |
+
replace_button.click(lambda x: x, inputs=response_text, outputs=input_text)
|
55 |
+
|
56 |
+
def chat_interaction(prompt, history):
|
57 |
+
if prompt.strip():
|
58 |
+
response = generate_text(prompt, output_length=10)
|
59 |
+
|
60 |
+
# Exclude the input prompt text from the response
|
61 |
+
response = response[len(prompt):].strip()
|
62 |
+
history.append({"role": "user", "content": prompt})
|
63 |
+
history.append({"role": "assistant", "content": response})
|
64 |
+
|
65 |
+
# Call validate_and_generate with the response
|
66 |
+
response_text_value = validate_and_generate(response, output_length=10)
|
67 |
+
return history, response_text_value[len(response):].strip(), ""
|
68 |
+
|
69 |
+
input_text.submit(chat_interaction, inputs=[input_text, chatbox], outputs=[chatbox, response_text, input_text])
|
70 |
+
|
71 |
+
# Launch the interface
|
72 |
+
demo.launch()
|