Spaces:
Runtime error
Runtime error
File size: 4,046 Bytes
aac338f fca3535 0824d60 aac338f fca3535 aac338f 76e7d38 fca3535 c61580a 76e7d38 0824d60 4ff15b7 fca3535 76e7d38 fca3535 7e9b981 fca3535 0824d60 76e7d38 7e9b981 76e7d38 fca3535 76e7d38 fca3535 7e9b981 c61580a 7e9b981 0824d60 fca3535 7e1de43 0824d60 76e7d38 0824d60 fca3535 0824d60 76e7d38 7e9b981 76e7d38 7e9b981 fca3535 76e7d38 fca3535 76e7d38 bbc9212 76e7d38 fca3535 76e7d38 fca3535 76e7d38 fca3535 7e9b981 bbc9212 fca3535 7e9b981 a51b33a 0824d60 fca3535 3b0a2ee 76e7d38 fca3535 76e7d38 3b0a2ee fca3535 3b0a2ee fca3535 c61580a 3b0a2ee fca3535 3b0a2ee 7e9b981 76e7d38 1a2b6b0 76e7d38 fca3535 3b0a2ee fca3535 76e7d38 fca3535 76e7d38 fca3535 7e9b981 76e7d38 7e9b981 3b0a2ee fca3535 76e7d38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import gradio as gr
import torch
import asyncio
import os
from random import randint
from threading import RLock
from pathlib import Path
from all_models import models
from externalmod import gr_Interface_load, randomize_seed
# Create a lock for thread safety
lock = RLock()
# Load Hugging Face token from environment variable
HF_TOKEN = os.getenv("HF_TOKEN")
# Function to load models with optimized settings
def load_fn(models):
global models_load
models_load = {}
for model in models:
if model not in models_load:
try:
print(f"Loading model: {model}")
m = gr_Interface_load(
f'models/{model}',
hf_token=HF_TOKEN,
torch_dtype=torch.float16 # Reduce memory usage
)
m.enable_model_cpu_offload() # Offload to CPU when not in use
models_load[model] = m
except Exception as e:
print(f"Error loading model {model}: {e}")
models_load[model] = None
print("Loading models...")
load_fn(models)
print("Models loaded successfully.")
# Constants
num_models = 1
starting_seed = randint(1941, 2024)
MAX_SEED = 3999999999
inference_timeout = 600
# Update UI components
def extend_choices(choices):
return choices[:num_models] + ['NA'] * (num_models - len(choices))
def update_imgbox(choices):
choices_extended = extend_choices(choices)
return [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_extended]
# Async inference function
async def infer(model_str, prompt, seed=1):
if model_str not in models_load or models_load[model_str] is None:
print(f"Model {model_str} is unavailable.")
return None
kwargs = {"seed": seed}
try:
print(f"Running inference for model: {model_str} with prompt: '{prompt}'")
result = await asyncio.to_thread(models_load[model_str].fn, prompt=prompt, **kwargs, token=HF_TOKEN)
if result:
with lock:
png_path = "image.png"
result.save(png_path)
return str(Path(png_path).resolve())
except torch.cuda.OutOfMemoryError:
print(f"CUDA memory error for {model_str}. Try reducing image size.")
except Exception as e:
print(f"Error during inference for {model_str}: {e}")
return None
# Synchronous wrapper
def gen_fnseed(model_str, prompt, seed=1):
if model_str == 'NA':
return None
try:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
result = loop.run_until_complete(infer(model_str, prompt, seed))
except Exception as e:
print(f"Error generating image for {model_str}: {e}")
result = None
finally:
loop.close()
return result
# Gradio UI
print("Creating Gradio interface...")
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
gr.HTML("<center><h1>Compare-6</h1></center>")
with gr.Tab('Compare-6'):
txt_input = gr.Textbox(label='Your prompt:', lines=4)
gen_button = gr.Button('Generate up to 6 images')
seed = gr.Slider(label="Seed (0 to MAX)", minimum=0, maximum=MAX_SEED, value=starting_seed)
seed_rand = gr.Button("Randomize Seed 🎲")
seed_rand.click(randomize_seed, None, [seed], queue=False)
output = [gr.Image(label=m) for m in models[:num_models]]
current_models = [gr.Textbox(m, visible=False) for m in models[:num_models]]
for m, o in zip(current_models, output):
gen_button.click(gen_fnseed, inputs=[m, txt_input, seed], outputs=[o], queue=False)
with gr.Accordion('Model selection'):
model_choice = gr.CheckboxGroup(models, label=f'Choose up to {num_models} models')
model_choice.change(update_imgbox, model_choice, output)
model_choice.change(extend_choices, model_choice, current_models)
demo.queue(default_concurrency_limit=20, max_size=50) # Adjusted for better stability
demo.launch(show_api=False)
|