|
import requests |
|
from bs4 import BeautifulSoup |
|
import pandas as pd |
|
import streamlit as st |
|
import torch |
|
from transformers import BertTokenizer, BertModel |
|
import numpy as np |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
import sys |
|
import subprocess |
|
|
|
try: |
|
from bs4 import BeautifulSoup |
|
except ModuleNotFoundError: |
|
subprocess.check_call([sys.executable, "-m", "pip", "install", "beautifulsoup4"]) |
|
from bs4 import BeautifulSoup |
|
|
|
|
|
url = "https://courses.analyticsvidhya.com/pages/all-free-courses" |
|
response = requests.get(url) |
|
soup = BeautifulSoup(response.content, 'html.parser') |
|
|
|
courses = [] |
|
|
|
|
|
for course_card in soup.find_all('header', class_='course-card__img-container'): |
|
img_tag = course_card.find('img', class_='course-card__img') |
|
|
|
if img_tag: |
|
title = img_tag.get('alt') |
|
image_url = img_tag.get('src') |
|
|
|
link_tag = course_card.find_previous('a') |
|
if link_tag: |
|
course_link = link_tag.get('href') |
|
if not course_link.startswith('http'): |
|
course_link = 'https://courses.analyticsvidhya.com' + course_link |
|
|
|
courses.append({ |
|
'title': title, |
|
'image_url': image_url, |
|
'course_link': course_link |
|
}) |
|
|
|
|
|
df = pd.DataFrame(courses) |
|
|
|
|
|
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') |
|
model = BertModel.from_pretrained('bert-base-uncased') |
|
|
|
|
|
def get_bert_embedding(text): |
|
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True) |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
return outputs.last_hidden_state.mean(dim=1).numpy() |
|
|
|
|
|
df['embedding'] = df['title'].apply(lambda x: get_bert_embedding(x)) |
|
|
|
|
|
def search_courses(query): |
|
query_embedding = get_bert_embedding(query) |
|
course_embeddings = np.vstack(df['embedding'].values) |
|
|
|
|
|
similarities = cosine_similarity(query_embedding, course_embeddings).flatten() |
|
|
|
|
|
df['score'] = similarities |
|
|
|
|
|
top_results = df.sort_values(by='score', ascending=False).head(10) |
|
return top_results[['title', 'image_url', 'course_link', 'score']].to_dict(orient='records') |
|
|
|
|
|
st.title("Analytics Vidhya Smart Course Search") |
|
st.write("Find the most relevant courses from Analytics Vidhya based on your query.") |
|
|
|
query = st.text_input("Enter your search query", placeholder="e.g., machine learning, data science, python") |
|
|
|
if query: |
|
results = search_courses(query) |
|
if results: |
|
for item in results: |
|
course_title = item['title'] |
|
course_image = item['image_url'] |
|
course_link = item['course_link'] |
|
relevance_score = round(item['score'] * 100, 2) |
|
|
|
st.image(course_image, width=300) |
|
st.markdown(f"### [{course_title}]({course_link})") |
|
st.write(f"Relevance: {relevance_score}%") |
|
st.markdown("---") |
|
else: |
|
st.write("No results found.") |
|
|