Upload 3 files
Browse files- README.md +21 -13
- app_using_shiny.py +205 -0
- app_using_streamlit.py +89 -0
README.md
CHANGED
@@ -1,13 +1,21 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Smart Search Tool for Analytics Vidhya Courses
|
2 |
+
# Goal
|
3 |
+
To create a smart search tool that enables users to find relevant free courses on Analytics Vidhya’s platform quickly.
|
4 |
+
|
5 |
+
# Project Approach
|
6 |
+
# Data Collection
|
7 |
+
I began by scraping the free courses' titles and relevant metadata, such as course links and images, from Analytics Vidhya’s platform using BeautifulSoup.
|
8 |
+
|
9 |
+
# Model Selection
|
10 |
+
Originally, I used the Groq API for generating embeddings and conducting searches. However, I found the results less suitable, leading me to switch to a more refined solution using BERT (Bidirectional Encoder Representations from Transformers). I leveraged a pre-trained BERT model (bert-base-uncased from Hugging Face) for generating embeddings.
|
11 |
+
|
12 |
+
# Relevance Matching
|
13 |
+
To match user queries with relevant courses, I calculated cosine similarity between the user’s query embedding and the course title embeddings. This similarity score enables ranking courses based on relevance, ensuring the most suitable courses are shown first.
|
14 |
+
|
15 |
+
# Interface
|
16 |
+
The application uses both Streamlit and Shiny for flexible, user-friendly interfaces. These interfaces display course details dynamically, including title, image, link, and relevance score.Finally I can able to conclude that Shiny is more faster in retrieving the results and display those in more interactive way than StreamLit.
|
17 |
+
|
18 |
+
# Deployment on Hugging Face Spaces
|
19 |
+
I deployed the tool on Hugging Face Spaces, providing an accessible, visually appealing interface for public use, enhanced with custom CSS for style and responsiveness.
|
20 |
+
|
21 |
+
BERT model : google-bert/bert-base-uncased
|
app_using_shiny.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from shiny import App, ui, render
|
2 |
+
import requests
|
3 |
+
from bs4 import BeautifulSoup
|
4 |
+
import pandas as pd
|
5 |
+
import torch
|
6 |
+
from transformers import BertTokenizer, BertModel
|
7 |
+
import numpy as np
|
8 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
+
|
10 |
+
# Step 1: Scrape the free courses from Analytics Vidhya
|
11 |
+
url = "https://courses.analyticsvidhya.com/pages/all-free-courses"
|
12 |
+
response = requests.get(url)
|
13 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
14 |
+
|
15 |
+
courses = []
|
16 |
+
|
17 |
+
# Extracting course title, image, and course link
|
18 |
+
for course_card in soup.find_all('header', class_='course-card__img-container'):
|
19 |
+
img_tag = course_card.find('img', class_='course-card__img')
|
20 |
+
|
21 |
+
if img_tag:
|
22 |
+
title = img_tag.get('alt')
|
23 |
+
image_url = img_tag.get('src')
|
24 |
+
|
25 |
+
link_tag = course_card.find_previous('a')
|
26 |
+
if link_tag:
|
27 |
+
course_link = link_tag.get('href')
|
28 |
+
if not course_link.startswith('http'):
|
29 |
+
course_link = 'https://courses.analyticsvidhya.com' + course_link
|
30 |
+
|
31 |
+
courses.append({
|
32 |
+
'title': title,
|
33 |
+
'image_url': image_url,
|
34 |
+
'course_link': course_link
|
35 |
+
})
|
36 |
+
|
37 |
+
# Step 2: Create DataFrame
|
38 |
+
df = pd.DataFrame(courses)
|
39 |
+
|
40 |
+
# Load pre-trained BERT model and tokenizer
|
41 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
42 |
+
model = BertModel.from_pretrained('bert-base-uncased')
|
43 |
+
|
44 |
+
# Function to generate embeddings using BERT
|
45 |
+
def get_bert_embedding(text):
|
46 |
+
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True)
|
47 |
+
with torch.no_grad():
|
48 |
+
outputs = model(**inputs)
|
49 |
+
return outputs.last_hidden_state.mean(dim=1).numpy()
|
50 |
+
|
51 |
+
# Create embeddings for course titles
|
52 |
+
df['embedding'] = df['title'].apply(lambda x: get_bert_embedding(x))
|
53 |
+
|
54 |
+
# Function to perform search using BERT-based similarity
|
55 |
+
def search_courses(query):
|
56 |
+
query_embedding = get_bert_embedding(query)
|
57 |
+
course_embeddings = np.vstack(df['embedding'].values)
|
58 |
+
|
59 |
+
# Compute cosine similarity between query embedding and course embeddings
|
60 |
+
similarities = cosine_similarity(query_embedding, course_embeddings).flatten()
|
61 |
+
|
62 |
+
# Add the similarity scores to the DataFrame
|
63 |
+
df['score'] = similarities
|
64 |
+
|
65 |
+
# Sort by similarity score in descending order and return top results
|
66 |
+
top_results = df.sort_values(by='score', ascending=False).head(10)
|
67 |
+
return top_results[['title', 'image_url', 'course_link', 'score']].to_dict(orient='records')
|
68 |
+
|
69 |
+
# Shiny UI and Server
|
70 |
+
app_ui = ui.page_fluid(
|
71 |
+
ui.tags.style(
|
72 |
+
"""
|
73 |
+
@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@300;500;700&display=swap');
|
74 |
+
|
75 |
+
body {
|
76 |
+
font-family: 'Poppins', sans-serif;
|
77 |
+
background-color: #f4f6f9;
|
78 |
+
}
|
79 |
+
|
80 |
+
.container {
|
81 |
+
padding: 20px;
|
82 |
+
}
|
83 |
+
|
84 |
+
h2 {
|
85 |
+
color: #ff6f61;
|
86 |
+
font-weight: 700;
|
87 |
+
text-align: center;
|
88 |
+
}
|
89 |
+
|
90 |
+
.result-container {
|
91 |
+
display: flex;
|
92 |
+
flex-wrap: wrap;
|
93 |
+
gap: 20px;
|
94 |
+
justify-content: center;
|
95 |
+
}
|
96 |
+
|
97 |
+
.course-card {
|
98 |
+
background-color: #ffffff;
|
99 |
+
border-radius: 12px;
|
100 |
+
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.15);
|
101 |
+
overflow: hidden;
|
102 |
+
width: calc(50% - 10px);
|
103 |
+
transition: transform 0.3s, box-shadow 0.3s;
|
104 |
+
}
|
105 |
+
|
106 |
+
.course-card:hover {
|
107 |
+
transform: scale(1.05);
|
108 |
+
box-shadow: 0 6px 20px rgba(0, 0, 0, 0.2);
|
109 |
+
}
|
110 |
+
|
111 |
+
.course-image {
|
112 |
+
width: 100%;
|
113 |
+
height: 180px;
|
114 |
+
object-fit: cover;
|
115 |
+
border-top-left-radius: 12px;
|
116 |
+
border-top-right-radius: 12px;
|
117 |
+
}
|
118 |
+
|
119 |
+
.course-info {
|
120 |
+
padding: 15px;
|
121 |
+
}
|
122 |
+
|
123 |
+
.course-info h3 {
|
124 |
+
font-size: 20px;
|
125 |
+
color: #333;
|
126 |
+
margin-top: 0;
|
127 |
+
}
|
128 |
+
|
129 |
+
.course-info p {
|
130 |
+
color: #666;
|
131 |
+
font-size: 16px;
|
132 |
+
margin-bottom: 10px;
|
133 |
+
}
|
134 |
+
|
135 |
+
.course-link {
|
136 |
+
background-color: #ff6f61;
|
137 |
+
color: white;
|
138 |
+
padding: 8px 12px;
|
139 |
+
text-decoration: none;
|
140 |
+
border-radius: 6px;
|
141 |
+
font-size: 15px;
|
142 |
+
display: inline-block;
|
143 |
+
margin-top: 10px;
|
144 |
+
transition: background-color 0.2s;
|
145 |
+
}
|
146 |
+
|
147 |
+
.course-link:hover {
|
148 |
+
background-color: #e85a50;
|
149 |
+
}
|
150 |
+
|
151 |
+
.no-results {
|
152 |
+
text-align: center;
|
153 |
+
color: #888;
|
154 |
+
font-style: italic;
|
155 |
+
}
|
156 |
+
"""
|
157 |
+
),
|
158 |
+
ui.h2("Analytics Vidhya Smart Course Search"),
|
159 |
+
ui.input_text("query", "Enter your search query", placeholder="e.g., machine learning, data science, python"),
|
160 |
+
ui.output_text("search_info"),
|
161 |
+
ui.output_ui("results")
|
162 |
+
)
|
163 |
+
|
164 |
+
def server(input, output, session):
|
165 |
+
@output
|
166 |
+
@render.ui
|
167 |
+
def results():
|
168 |
+
if not input.query():
|
169 |
+
return ui.p("Enter a search query to get started!", class_="no-results")
|
170 |
+
|
171 |
+
# Perform the search
|
172 |
+
query = input.query()
|
173 |
+
results = search_courses(query)
|
174 |
+
|
175 |
+
if results:
|
176 |
+
result_ui = []
|
177 |
+
for item in results:
|
178 |
+
course_title = item['title']
|
179 |
+
course_image = item['image_url']
|
180 |
+
course_link = item['course_link']
|
181 |
+
relevance_score = round(item['score'] * 100, 2)
|
182 |
+
|
183 |
+
# Create course card UI
|
184 |
+
result_ui.append(
|
185 |
+
ui.div(
|
186 |
+
ui.img(src=course_image, class_="course-image"),
|
187 |
+
ui.div(
|
188 |
+
ui.h3(course_title),
|
189 |
+
ui.p(f"Relevance: {relevance_score}%"),
|
190 |
+
ui.a("View Course", href=course_link, target="_blank", class_="course-link"),
|
191 |
+
class_="course-info"
|
192 |
+
),
|
193 |
+
class_="course-card"
|
194 |
+
)
|
195 |
+
)
|
196 |
+
return ui.div(*result_ui, class_="result-container")
|
197 |
+
else:
|
198 |
+
return ui.p("No results found.", class_="no-results")
|
199 |
+
|
200 |
+
@output
|
201 |
+
@render.text
|
202 |
+
def search_info():
|
203 |
+
return f"Results for '{input.query()}'" if input.query() else "Search for courses by typing a query above."
|
204 |
+
|
205 |
+
app = App(app_ui, server)
|
app_using_streamlit.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from bs4 import BeautifulSoup
|
3 |
+
import pandas as pd
|
4 |
+
import streamlit as st
|
5 |
+
import torch
|
6 |
+
from transformers import BertTokenizer, BertModel
|
7 |
+
import numpy as np
|
8 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
+
|
10 |
+
# Step 1: Scrape the free courses from Analytics Vidhya
|
11 |
+
url = "https://courses.analyticsvidhya.com/pages/all-free-courses"
|
12 |
+
response = requests.get(url)
|
13 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
14 |
+
|
15 |
+
courses = []
|
16 |
+
|
17 |
+
# Extracting course title, image, and course link
|
18 |
+
for course_card in soup.find_all('header', class_='course-card__img-container'):
|
19 |
+
img_tag = course_card.find('img', class_='course-card__img')
|
20 |
+
|
21 |
+
if img_tag:
|
22 |
+
title = img_tag.get('alt')
|
23 |
+
image_url = img_tag.get('src')
|
24 |
+
|
25 |
+
link_tag = course_card.find_previous('a')
|
26 |
+
if link_tag:
|
27 |
+
course_link = link_tag.get('href')
|
28 |
+
if not course_link.startswith('http'):
|
29 |
+
course_link = 'https://courses.analyticsvidhya.com' + course_link
|
30 |
+
|
31 |
+
courses.append({
|
32 |
+
'title': title,
|
33 |
+
'image_url': image_url,
|
34 |
+
'course_link': course_link
|
35 |
+
})
|
36 |
+
|
37 |
+
# Step 2: Create DataFrame
|
38 |
+
df = pd.DataFrame(courses)
|
39 |
+
|
40 |
+
# Load pre-trained BERT model and tokenizer
|
41 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
42 |
+
model = BertModel.from_pretrained('bert-base-uncased')
|
43 |
+
|
44 |
+
# Function to generate embeddings using BERT
|
45 |
+
def get_bert_embedding(text):
|
46 |
+
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True)
|
47 |
+
with torch.no_grad():
|
48 |
+
outputs = model(**inputs)
|
49 |
+
return outputs.last_hidden_state.mean(dim=1).numpy()
|
50 |
+
|
51 |
+
# Create embeddings for course titles
|
52 |
+
df['embedding'] = df['title'].apply(lambda x: get_bert_embedding(x))
|
53 |
+
|
54 |
+
# Function to perform search using BERT-based similarity
|
55 |
+
def search_courses(query):
|
56 |
+
query_embedding = get_bert_embedding(query)
|
57 |
+
course_embeddings = np.vstack(df['embedding'].values)
|
58 |
+
|
59 |
+
# Compute cosine similarity between query embedding and course embeddings
|
60 |
+
similarities = cosine_similarity(query_embedding, course_embeddings).flatten()
|
61 |
+
|
62 |
+
# Add the similarity scores to the DataFrame
|
63 |
+
df['score'] = similarities
|
64 |
+
|
65 |
+
# Sort by similarity score in descending order and return top results
|
66 |
+
top_results = df.sort_values(by='score', ascending=False).head(10)
|
67 |
+
return top_results[['title', 'image_url', 'course_link', 'score']].to_dict(orient='records')
|
68 |
+
|
69 |
+
# Streamlit Interface
|
70 |
+
st.title("Analytics Vidhya Smart Course Search")
|
71 |
+
st.write("Find the most relevant courses from Analytics Vidhya based on your query.")
|
72 |
+
|
73 |
+
query = st.text_input("Enter your search query", placeholder="e.g., machine learning, data science, python")
|
74 |
+
|
75 |
+
if query:
|
76 |
+
results = search_courses(query)
|
77 |
+
if results:
|
78 |
+
for item in results:
|
79 |
+
course_title = item['title']
|
80 |
+
course_image = item['image_url']
|
81 |
+
course_link = item['course_link']
|
82 |
+
relevance_score = round(item['score'] * 100, 2)
|
83 |
+
|
84 |
+
st.image(course_image, width=300)
|
85 |
+
st.markdown(f"### [{course_title}]({course_link})")
|
86 |
+
st.write(f"Relevance: {relevance_score}%")
|
87 |
+
st.markdown("---")
|
88 |
+
else:
|
89 |
+
st.write("No results found.")
|