Upload app_using_streamlit.py
Browse files- app_using_streamlit.py +89 -0
app_using_streamlit.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from bs4 import BeautifulSoup
|
3 |
+
import pandas as pd
|
4 |
+
import streamlit as st
|
5 |
+
import torch
|
6 |
+
from transformers import BertTokenizer, BertModel
|
7 |
+
import numpy as np
|
8 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
+
|
10 |
+
# Step 1: Scrape the free courses from Analytics Vidhya
|
11 |
+
url = "https://courses.analyticsvidhya.com/pages/all-free-courses"
|
12 |
+
response = requests.get(url)
|
13 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
14 |
+
|
15 |
+
courses = []
|
16 |
+
|
17 |
+
# Extracting course title, image, and course link
|
18 |
+
for course_card in soup.find_all('header', class_='course-card__img-container'):
|
19 |
+
img_tag = course_card.find('img', class_='course-card__img')
|
20 |
+
|
21 |
+
if img_tag:
|
22 |
+
title = img_tag.get('alt')
|
23 |
+
image_url = img_tag.get('src')
|
24 |
+
|
25 |
+
link_tag = course_card.find_previous('a')
|
26 |
+
if link_tag:
|
27 |
+
course_link = link_tag.get('href')
|
28 |
+
if not course_link.startswith('http'):
|
29 |
+
course_link = 'https://courses.analyticsvidhya.com' + course_link
|
30 |
+
|
31 |
+
courses.append({
|
32 |
+
'title': title,
|
33 |
+
'image_url': image_url,
|
34 |
+
'course_link': course_link
|
35 |
+
})
|
36 |
+
|
37 |
+
# Step 2: Create DataFrame
|
38 |
+
df = pd.DataFrame(courses)
|
39 |
+
|
40 |
+
# Load pre-trained BERT model and tokenizer
|
41 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
42 |
+
model = BertModel.from_pretrained('bert-base-uncased')
|
43 |
+
|
44 |
+
# Function to generate embeddings using BERT
|
45 |
+
def get_bert_embedding(text):
|
46 |
+
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True)
|
47 |
+
with torch.no_grad():
|
48 |
+
outputs = model(**inputs)
|
49 |
+
return outputs.last_hidden_state.mean(dim=1).numpy()
|
50 |
+
|
51 |
+
# Create embeddings for course titles
|
52 |
+
df['embedding'] = df['title'].apply(lambda x: get_bert_embedding(x))
|
53 |
+
|
54 |
+
# Function to perform search using BERT-based similarity
|
55 |
+
def search_courses(query):
|
56 |
+
query_embedding = get_bert_embedding(query)
|
57 |
+
course_embeddings = np.vstack(df['embedding'].values)
|
58 |
+
|
59 |
+
# Compute cosine similarity between query embedding and course embeddings
|
60 |
+
similarities = cosine_similarity(query_embedding, course_embeddings).flatten()
|
61 |
+
|
62 |
+
# Add the similarity scores to the DataFrame
|
63 |
+
df['score'] = similarities
|
64 |
+
|
65 |
+
# Sort by similarity score in descending order and return top results
|
66 |
+
top_results = df.sort_values(by='score', ascending=False).head(10)
|
67 |
+
return top_results[['title', 'image_url', 'course_link', 'score']].to_dict(orient='records')
|
68 |
+
|
69 |
+
# Streamlit Interface
|
70 |
+
st.title("Analytics Vidhya Smart Course Search")
|
71 |
+
st.write("Find the most relevant courses from Analytics Vidhya based on your query.")
|
72 |
+
|
73 |
+
query = st.text_input("Enter your search query", placeholder="e.g., machine learning, data science, python")
|
74 |
+
|
75 |
+
if query:
|
76 |
+
results = search_courses(query)
|
77 |
+
if results:
|
78 |
+
for item in results:
|
79 |
+
course_title = item['title']
|
80 |
+
course_image = item['image_url']
|
81 |
+
course_link = item['course_link']
|
82 |
+
relevance_score = round(item['score'] * 100, 2)
|
83 |
+
|
84 |
+
st.image(course_image, width=300)
|
85 |
+
st.markdown(f"### [{course_title}]({course_link})")
|
86 |
+
st.write(f"Relevance: {relevance_score}%")
|
87 |
+
st.markdown("---")
|
88 |
+
else:
|
89 |
+
st.write("No results found.")
|