File size: 4,054 Bytes
56a8ec5
729b2e0
 
56a8ec5
db2b2f5
729b2e0
 
 
db2b2f5
729b2e0
 
db2b2f5
729b2e0
 
 
db2b2f5
729b2e0
 
 
 
 
db2b2f5
729b2e0
 
 
 
 
db2b2f5
 
 
 
729b2e0
 
 
 
 
db2b2f5
729b2e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db2b2f5
 
729b2e0
 
 
 
 
 
 
 
 
 
 
db2b2f5
 
 
 
729b2e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db2b2f5
729b2e0
 
 
 
 
 
 
db2b2f5
729b2e0
 
 
 
 
 
db2b2f5
 
 
729b2e0
 
 
 
 
db2b2f5
729b2e0
db2b2f5
729b2e0
 
db2b2f5
 
 
 
 
 
 
 
729b2e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db2b2f5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import gradio as gr
import numpy as np
import random

from diffusers import StableDiffusionPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "runwayml/stable-diffusion-v1-5"

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

pipe = StableDiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


def infer(
    prompt,
    negative_prompt="",
    seed=42,
    randomize_seed=False,
    width=512,
    height=512,
    guidance_scale=7.5,
    num_inference_steps=50,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator(device).manual_seed(seed)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed


examples = [
    "A futuristic cityscape with flying cars",
    "A magical forest with glowing mushrooms",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Stable Diffusion v1.5 Demo")
        gr.Markdown(
            "[Learn more](https://huggingface.co/runwayml/stable-diffusion-v1-5) about the Stable Diffusion v1.5 model. "
        )
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=20.0,
                    step=0.5,
                    value=7.5,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=50,
                )

        gr.Examples(
            examples=examples,
            inputs=[prompt],
            outputs=[result, seed],
            fn=infer,
            cache_examples=True,
            cache_mode="lazy",
        )
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()