Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,13 @@
|
|
1 |
import gradio as gr
|
2 |
import joblib
|
3 |
import numpy as np
|
|
|
|
|
4 |
|
5 |
-
# Load the RandomForest model
|
6 |
model = joblib.load('random_forest_model.pkl') # Update with the actual path
|
|
|
7 |
# Define a function for classification
|
8 |
-
def classify(features):
|
9 |
# Convert the input features to a 2D numpy array
|
10 |
features_array = np.array([features])
|
11 |
# Make a prediction
|
@@ -16,7 +18,7 @@ def classify(features):
|
|
16 |
iface = gr.Interface(
|
17 |
fn=classify,
|
18 |
inputs=[
|
19 |
-
gr.Slider(minimum=0, maximum=100,
|
20 |
],
|
21 |
outputs="text",
|
22 |
title="Age Classification",
|
@@ -25,3 +27,4 @@ iface = gr.Interface(
|
|
25 |
|
26 |
# Launch the interface
|
27 |
iface.launch()
|
|
|
|
1 |
import gradio as gr
|
2 |
import joblib
|
3 |
import numpy as np
|
4 |
+
import sklearn
|
5 |
+
|
6 |
|
|
|
7 |
model = joblib.load('random_forest_model.pkl') # Update with the actual path
|
8 |
+
|
9 |
# Define a function for classification
|
10 |
+
def classify(*features):
|
11 |
# Convert the input features to a 2D numpy array
|
12 |
features_array = np.array([features])
|
13 |
# Make a prediction
|
|
|
18 |
iface = gr.Interface(
|
19 |
fn=classify,
|
20 |
inputs=[
|
21 |
+
gr.Slider(minimum=0, maximum=100, value=50, label=f"Feature {i+1}") for i in range(15)
|
22 |
],
|
23 |
outputs="text",
|
24 |
title="Age Classification",
|
|
|
27 |
|
28 |
# Launch the interface
|
29 |
iface.launch()
|
30 |
+
|