|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
|
|
pipe = pipeline("text-classification", model="AbrorBalxiyev/my_awesome_model") |
|
|
|
|
|
def classify_text(text): |
|
results = pipe(text) |
|
output = {result['label']: f"{result['score'] * 100:.2f}%" for result in results[0]} |
|
return output |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## Text Classification Pipeline") |
|
text_input = gr.Textbox(label="Enter Text", placeholder="Type something here...") |
|
output_label = gr.Label(label="Classification Results") |
|
classify_button = gr.Button("Classify") |
|
|
|
classify_button.click(classify_text, inputs=text_input, outputs=output_label) |
|
|
|
|
|
demo.launch() |