import pickle import pandas as pd from sentence_transformers import SentenceTransformer from sklearn.metrics.pairwise import cosine_similarity with open("course_emb.pkl", "rb") as f: course_emb = pickle.load(f) df = pd.read_excel("analytics_vidhya_courses_Final.xlsx") model = SentenceTransformer('all-MiniLM-L6-v2') def search_courses(query, top_n=5): query_embedding = model.encode([query]) similarities = cosine_similarity(query_embedding, course_emb) top_n_idx = similarities[0].argsort()[-top_n:][::-1] return df.iloc[top_n_idx][["Course Title", "Course Description"]] query = input("Enter your search query: ") top_courses = search_courses(query) print("\nTop relevant courses:") for idx, row in top_courses.iterrows(): print(f"Title: {row['Course Title']}") print(f"Description: {row['Course Description']}\n")