Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,8 +3,8 @@ from ultralytics import YOLO
|
|
3 |
from PIL import Image
|
4 |
import os
|
5 |
|
6 |
-
# Load the trained YOLOv8 model
|
7 |
-
model = YOLO("best.pt")
|
8 |
|
9 |
# Define the prediction function
|
10 |
def predict(image):
|
@@ -21,9 +21,9 @@ def get_example_images():
|
|
21 |
examples.append(os.path.join(image_folder, filename))
|
22 |
return examples
|
23 |
|
24 |
-
# Streamlit UI for
|
25 |
-
st.title("
|
26 |
-
st.markdown("Upload an image to detect
|
27 |
|
28 |
# Allow the user to upload an image
|
29 |
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
@@ -31,10 +31,10 @@ uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "pn
|
|
31 |
if uploaded_image is not None:
|
32 |
# Open the uploaded image using PIL
|
33 |
image = Image.open(uploaded_image)
|
34 |
-
|
35 |
# Display the uploaded image
|
36 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
37 |
-
|
38 |
# Run the model prediction
|
39 |
st.subheader("Prediction Results:")
|
40 |
result_image = predict(image)
|
@@ -47,4 +47,4 @@ if st.checkbox('Show example images'):
|
|
47 |
example_images = get_example_images()
|
48 |
for example_image in example_images:
|
49 |
img = Image.open(example_image)
|
50 |
-
st.image(img, caption=os.path.basename(example_image), use_column_width=True)
|
|
|
3 |
from PIL import Image
|
4 |
import os
|
5 |
|
6 |
+
# Load the trained YOLOv8 model for seatbelt detection
|
7 |
+
model = YOLO("best.pt") # Assumes you have a seatbelt-specific trained model
|
8 |
|
9 |
# Define the prediction function
|
10 |
def predict(image):
|
|
|
21 |
examples.append(os.path.join(image_folder, filename))
|
22 |
return examples
|
23 |
|
24 |
+
# Streamlit UI for Seatbelt Detection with YOLO
|
25 |
+
st.title("Seatbelt Detection with YOLOv8")
|
26 |
+
st.markdown("Upload an image to detect seatbelt usage.")
|
27 |
|
28 |
# Allow the user to upload an image
|
29 |
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
|
|
31 |
if uploaded_image is not None:
|
32 |
# Open the uploaded image using PIL
|
33 |
image = Image.open(uploaded_image)
|
34 |
+
|
35 |
# Display the uploaded image
|
36 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
37 |
+
|
38 |
# Run the model prediction
|
39 |
st.subheader("Prediction Results:")
|
40 |
result_image = predict(image)
|
|
|
47 |
example_images = get_example_images()
|
48 |
for example_image in example_images:
|
49 |
img = Image.open(example_image)
|
50 |
+
st.image(img, caption=os.path.basename(example_image), use_column_width=True)
|