Spaces:
Sleeping
Sleeping
File size: 2,821 Bytes
9239cd6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
from transformers import SegformerImageProcessor, AutoModelForSemanticSegmentation
from PIL import Image, ImageFilter
import torch.nn as nn
import os
import gradio as gr
processor = SegformerImageProcessor.from_pretrained("mattmdjaga/segformer_b2_clothes")
model = AutoModelForSemanticSegmentation.from_pretrained("mattmdjaga/segformer_b2_clothes")
title = "Background remover π"
description = " Image segmentation model which removes the background and optionally adds a white border."
article = 'Inference done on "mattmdjaga/segformer_b2_clothes" model'
folder_path = "Images"
example_list = []
if os.path.exists(folder_path) and os.path.isdir(folder_path):
file_paths = [os.path.join(folder_path, file_name) for file_name in os.listdir(folder_path)]
for file_path in file_paths:
example_list.append(['Large',file_path])
def predict(border_size, image):
sizes = {'Large': 5, 'Medium': 3, 'Small': 1, 'None': 0}
image = image.convert('RGB')
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits.cpu()
upsampled_logits = nn.functional.interpolate(
logits,
size=image.size[::-1],
mode="bilinear",
align_corners=False,
)
pred_seg = upsampled_logits.argmax(dim=1)[0]
non_background_mask = pred_seg != 0
# Convert tensor mask to PIL Image with an alpha channel
non_background_pil_mask = Image.fromarray(non_background_mask.numpy().astype('uint8') * 255, 'L')
# Create a composite image using the non-background mask
composite_image = Image.new('RGBA', image.size, color=(0, 0, 0, 0))
composite_image.paste(image.convert('RGBA'), mask=non_background_pil_mask)
if sizes[border_size] != 0:
stroke_radius = sizes[border_size]
img = composite_image # RGBA image
stroke_image = Image.new("RGBA", img.size, (255, 255, 255, 255))
img_alpha = img.getchannel(3).point(lambda x: 255 if x>0 else 0)
stroke_alpha = img_alpha.filter(ImageFilter.MaxFilter(stroke_radius))
stroke_alpha = stroke_alpha.filter(ImageFilter.SMOOTH)
stroke_image.putalpha(stroke_alpha)
output = Image.alpha_composite(stroke_image, img)
return output
else:
return composite_image
iface = gr.Interface(fn=predict,
inputs=[gr.Dropdown(['None','Small', 'Medium', 'Large'], label='Select Border Size'),
gr.Image(type='pil', label='Select Image.')],
outputs=gr.Image(type='pil', label='Output with background removed (sorta?)'),
title=title,
description=description,
article=article,
examples=example_list)
iface.launch() |