from transformers import SegformerImageProcessor, AutoModelForSemanticSegmentation from PIL import Image, ImageFilter import torch.nn as nn import os import gradio as gr processor = SegformerImageProcessor.from_pretrained("mattmdjaga/segformer_b2_clothes") model = AutoModelForSemanticSegmentation.from_pretrained("mattmdjaga/segformer_b2_clothes") title = "Background remover 👀" description = " Image segmentation model which removes the background and optionally adds a white border." article = 'Inference done on "mattmdjaga/segformer_b2_clothes" model' folder_path = "Images" example_list = [] if os.path.exists(folder_path) and os.path.isdir(folder_path): file_paths = [os.path.join(folder_path, file_name) for file_name in os.listdir(folder_path)] for file_path in file_paths: example_list.append(['Large',file_path]) def predict(border_size, image): sizes = {'Large': 5, 'Medium': 3, 'Small': 1, 'None': 0} image = image.convert('RGB') inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits.cpu() upsampled_logits = nn.functional.interpolate( logits, size=image.size[::-1], mode="bilinear", align_corners=False, ) pred_seg = upsampled_logits.argmax(dim=1)[0] non_background_mask = pred_seg != 0 # Convert tensor mask to PIL Image with an alpha channel non_background_pil_mask = Image.fromarray(non_background_mask.numpy().astype('uint8') * 255, 'L') # Create a composite image using the non-background mask composite_image = Image.new('RGBA', image.size, color=(0, 0, 0, 0)) composite_image.paste(image.convert('RGBA'), mask=non_background_pil_mask) if sizes[border_size] != 0: stroke_radius = sizes[border_size] img = composite_image # RGBA image stroke_image = Image.new("RGBA", img.size, (255, 255, 255, 255)) img_alpha = img.getchannel(3).point(lambda x: 255 if x>0 else 0) stroke_alpha = img_alpha.filter(ImageFilter.MaxFilter(stroke_radius)) stroke_alpha = stroke_alpha.filter(ImageFilter.SMOOTH) stroke_image.putalpha(stroke_alpha) output = Image.alpha_composite(stroke_image, img) return output else: return composite_image iface = gr.Interface(fn=predict, inputs=[gr.Dropdown(['None','Small', 'Medium', 'Large'], label='Select Border Size'), gr.Image(type='pil', label='Select Image.')], outputs=gr.Image(type='pil', label='Output with background removed (sorta?)'), title=title, description=description, article=article, examples=example_list) iface.launch()