Abu1998 commited on
Commit
f5e9858
·
verified ·
1 Parent(s): 7a2002a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -80
app.py CHANGED
@@ -1,82 +1,8 @@
1
- import gradio as gr
2
- import pandas as pd
3
- from datetime import datetime
4
- import os
5
 
6
- # Path for local storage on Hugging Face Space
7
- STORAGE_PATH = "appointments.csv"
8
 
9
- # Check if the storage file exists; if not, create it
10
- if not os.path.exists(STORAGE_PATH):
11
- df = pd.DataFrame(columns=[
12
- "Date", "Appointment", "Appointment Timing", "Services", "Products",
13
- "Contact", "Customer Name", "Rating", "Location", "Key-points", "Price"
14
- ])
15
- df.to_csv(STORAGE_PATH, index=False)
16
-
17
- # Function to save data to CSV
18
- def save_to_csv(appointment_timing, services, products, contact, customer_name, rating, location, key_points, price):
19
- # Load existing data
20
- df = pd.read_csv(STORAGE_PATH)
21
-
22
- # Auto-detect current date and appointment number
23
- date = datetime.now().strftime("%Y-%m-%d")
24
- appointment = len(df) + 1 # Generate appointment ID
25
-
26
- # Create a new row as a DataFrame
27
- new_row = pd.DataFrame([{
28
- "Date": date,
29
- "Appointment": appointment,
30
- "Appointment Timing": appointment_timing,
31
- "Services": services,
32
- "Products": products,
33
- "Contact": contact,
34
- "Customer Name": customer_name,
35
- "Rating": rating,
36
- "Location": location,
37
- "Key-points": key_points,
38
- "Price": price
39
- }])
40
-
41
- # Concatenate the new row with the existing DataFrame
42
- df = pd.concat([df, new_row], ignore_index=True)
43
- df.to_csv(STORAGE_PATH, index=False) # Save the updated DataFrame to the CSV file
44
- return f"Data saved successfully for Appointment {appointment}!"
45
-
46
- # Function to provide the download file
47
- def get_csv_file():
48
- return STORAGE_PATH
49
-
50
- # Define Gradio interface
51
- with gr.Blocks() as app:
52
- gr.Markdown("# Appointment Data Storage Application")
53
- appointment_timing = gr.Textbox(label="Appointment Timing")
54
- services = gr.Dropdown(
55
- label="Services",
56
- choices=["Full arm Rica", "Full leg", "Underarms", "Eyebrow", "Upper lips"],
57
- multiselect=True
58
- )
59
- products = gr.Textbox(label="Products")
60
- contact = gr.Textbox(label="Contact")
61
- customer_name = gr.Textbox(label="Customer Name")
62
- rating = gr.Radio(label="Rating", choices=["Very good", "Good", "Normal", "Bad", "Too bad"])
63
- location = gr.Textbox(label="Location")
64
- key_points = gr.Textbox(label="Key-points")
65
- price = gr.Dropdown(label="Price", choices=["999", "1499", "2499", "3499", "4499"])
66
- submit_button = gr.Button("Submit")
67
- output = gr.Textbox(label="Output")
68
- download_button = gr.File(label="Download Appointments Data", value=STORAGE_PATH)
69
-
70
- submit_button.click(
71
- save_to_csv,
72
- inputs=[
73
- appointment_timing, services, products, contact, customer_name, rating, location, key_points, price
74
- ],
75
- outputs=output
76
- )
77
-
78
- # Add a file download button
79
- download_button.render()
80
-
81
- # Launch the application
82
- app.launch(share=True)
 
1
+ from datasets import load_dataset
 
 
 
2
 
3
+ # Load the dataset from your Hugging Face Space
4
+ dataset = load_dataset("Abu1998/DataCollection/", split="train")
5
 
6
+ # Convert to pandas DataFrame and save locally
7
+ df = dataset.to_pandas()
8
+ df.to_csv("appointments.csv", index=False)