Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,61 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import os
|
3 |
-
from PIL import Image
|
4 |
import random
|
5 |
|
6 |
-
|
7 |
-
|
8 |
|
9 |
-
|
|
|
|
|
|
|
10 |
"""
|
11 |
-
|
12 |
"""
|
13 |
if image_option == "Upload My Image" and uploaded_image is not None:
|
14 |
img = uploaded_image
|
15 |
-
|
16 |
else:
|
17 |
-
img_path = random.choice(
|
18 |
img = Image.open(img_path)
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
|
|
|
|
|
|
23 |
with gr.Blocks() as demo:
|
24 |
gr.Markdown("## Face Recognition Test Run")
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
29 |
submit = gr.Button("Process Image")
|
30 |
output_image = gr.Image(label="Processed Image")
|
31 |
status = gr.Textbox(label="Status")
|
32 |
-
|
33 |
-
submit.click(
|
34 |
-
|
35 |
if __name__ == "__main__":
|
36 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import face_recognition
|
3 |
+
from PIL import Image, ImageDraw
|
4 |
import os
|
|
|
5 |
import random
|
6 |
|
7 |
+
# Path to the data folder containing sample images
|
8 |
+
DATA_FOLDER = "data/"
|
9 |
|
10 |
+
# Load sample images from the data folder
|
11 |
+
sample_images = [os.path.join(DATA_FOLDER, img) for img in os.listdir(DATA_FOLDER) if img.lower().endswith(('png', 'jpg', 'jpeg'))]
|
12 |
+
|
13 |
+
def recognize_faces(image_option, uploaded_image):
|
14 |
"""
|
15 |
+
Perform face recognition on the selected image.
|
16 |
"""
|
17 |
if image_option == "Upload My Image" and uploaded_image is not None:
|
18 |
img = uploaded_image
|
19 |
+
status = "Processed the uploaded image."
|
20 |
else:
|
21 |
+
img_path = random.choice(sample_images)
|
22 |
img = Image.open(img_path)
|
23 |
+
status = f"Processed a sample image: {os.path.basename(img_path)}"
|
24 |
+
|
25 |
+
# Convert PIL image to numpy array
|
26 |
+
img_array = face_recognition.load_image_file(img)
|
27 |
+
|
28 |
+
# Find all face locations and face encodings in the image
|
29 |
+
face_locations = face_recognition.face_locations(img_array)
|
30 |
+
face_encodings = face_recognition.face_encodings(img_array, face_locations)
|
31 |
+
|
32 |
+
# Convert back to PIL image for drawing
|
33 |
+
pil_image = Image.fromarray(img_array)
|
34 |
+
draw = ImageDraw.Draw(pil_image)
|
35 |
+
|
36 |
+
# Iterate over each face found in the image
|
37 |
+
for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):
|
38 |
+
# Draw a box around the face
|
39 |
+
draw.rectangle(((left, top), (right, bottom)), outline=(0, 0, 255), width=2)
|
40 |
+
|
41 |
+
# Clean up the drawing library
|
42 |
+
del draw
|
43 |
|
44 |
+
return pil_image, status
|
45 |
+
|
46 |
+
# Gradio interface
|
47 |
with gr.Blocks() as demo:
|
48 |
gr.Markdown("## Face Recognition Test Run")
|
49 |
+
|
50 |
+
with gr.Row():
|
51 |
+
image_option = gr.Radio(["Upload My Image", "Use Sample Image"], label="Select an Option")
|
52 |
+
uploaded_image = gr.Image(label="Upload Image (if selected)", type="pil", interactive=True)
|
53 |
+
|
54 |
submit = gr.Button("Process Image")
|
55 |
output_image = gr.Image(label="Processed Image")
|
56 |
status = gr.Textbox(label="Status")
|
57 |
+
|
58 |
+
submit.click(recognize_faces, inputs=[image_option, uploaded_image], outputs=[output_image, status])
|
59 |
+
|
60 |
if __name__ == "__main__":
|
61 |
demo.launch()
|