Update app.py
Browse files
app.py
CHANGED
@@ -19,6 +19,7 @@ def preprocess_input_data(input_data):
|
|
19 |
|
20 |
return input_scaled_df
|
21 |
|
|
|
22 |
# Define a function to make the sepsis prediction
|
23 |
def predict_sepsis(input_data):
|
24 |
input_scaled_df = preprocess_input_data(input_data)
|
@@ -26,19 +27,15 @@ def predict_sepsis(input_data):
|
|
26 |
probabilities = model.predict_proba(input_scaled_df)[0]
|
27 |
sepsis_status = "Positive" if prediction == 1 else "Negative"
|
28 |
|
29 |
-
if prediction == 1
|
30 |
-
|
31 |
-
sepsis_explanation = "Sepsis is a life-threatening condition caused by an infection. A positive prediction suggests that the patient might be exhibiting sepsis symptoms and requires immediate medical attention."
|
32 |
-
else:
|
33 |
-
status_icon = "✘" # Green checkmark icon for negative sepsis prediction
|
34 |
-
sepsis_explanation = "Sepsis is a life-threatening condition caused by an infection. A negative prediction suggests that the patient is not currently exhibiting sepsis symptoms."
|
35 |
|
36 |
output_df = pd.DataFrame(input_data, columns=['PRG', 'PL', 'PR', 'SK', 'TS', 'M11', 'BD2', 'Age', 'Insurance'])
|
37 |
output_df['Prediction'] = sepsis_status
|
38 |
output_df['Negative Probability'] = probabilities[0]
|
39 |
output_df['Positive Probability'] = probabilities[1]
|
40 |
|
41 |
-
return output_df, probabilities
|
42 |
|
43 |
# Create a Streamlit app
|
44 |
def main():
|
|
|
19 |
|
20 |
return input_scaled_df
|
21 |
|
22 |
+
|
23 |
# Define a function to make the sepsis prediction
|
24 |
def predict_sepsis(input_data):
|
25 |
input_scaled_df = preprocess_input_data(input_data)
|
|
|
27 |
probabilities = model.predict_proba(input_scaled_df)[0]
|
28 |
sepsis_status = "Positive" if prediction == 1 else "Negative"
|
29 |
|
30 |
+
status_icon = "✔" if prediction == 1 else "✘" # Red 'X' icon for positive sepsis prediction, green checkmark icon for negative sepsis prediction
|
31 |
+
sepsis_explanation = "Sepsis is a life-threatening condition caused by an infection. A positive prediction suggests that the patient might be exhibiting sepsis symptoms and requires immediate medical attention." if prediction == 1 else "Sepsis is a life-threatening condition caused by an infection. A negative prediction suggests that the patient is not currently exhibiting sepsis symptoms."
|
|
|
|
|
|
|
|
|
32 |
|
33 |
output_df = pd.DataFrame(input_data, columns=['PRG', 'PL', 'PR', 'SK', 'TS', 'M11', 'BD2', 'Age', 'Insurance'])
|
34 |
output_df['Prediction'] = sepsis_status
|
35 |
output_df['Negative Probability'] = probabilities[0]
|
36 |
output_df['Positive Probability'] = probabilities[1]
|
37 |
|
38 |
+
return output_df, probabilities, status_icon, sepsis_explanation
|
39 |
|
40 |
# Create a Streamlit app
|
41 |
def main():
|