Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
from llama_index import VectorStoreIndex, SimpleDirectoryReader, SummaryIndex | |
from llama_index.readers import SimpleWebPageReader | |
from llama_index.llms import MistralAI | |
from llama_index.embeddings import MistralAIEmbedding | |
from llama_index import ServiceContext | |
from llama_index.query_engine import RetrieverQueryEngine | |
description = "Example of an assistant with Gradio and Mistral AI via its API" | |
placeholder = "Ask a question" | |
placeholder_url = "Extract text from this url" | |
placeholder_api_key = "API key" | |
query_engine = None | |
with gr.Blocks() as demo: | |
gr.Markdown(""" ### Welcome to Gaia Level 2 Demo | |
Add an URL and your API key at the bottom of the interface before interacting with the Chat. This demo allows you to interact with a webpage and then ask questions to Mistral APIs. Mistral will answer with the context extracted from the webpage. | |
""") | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox() | |
clear = gr.ClearButton([msg, chatbot]) | |
with gr.Row(): | |
api_key_text_box = gr.Textbox(placeholder=placeholder_api_key, container=False, scale=7) | |
def setup_with_url(url, api_key): | |
global query_engine | |
# Set-up clients | |
llm = MistralAI(api_key=api_key,model="mistral-medium") | |
embed_model = MistralAIEmbedding(model_name='mistral-embed', api_key=api_key) | |
service_context = ServiceContext.from_defaults(chunk_size=1024, llm=llm, embed_model=embed_model) | |
# Set-up db | |
documents = SimpleWebPageReader(html_to_text=True).load_data([url]) | |
index = VectorStoreIndex.from_documents(documents, service_context=service_context) | |
query_engine = index.as_query_engine(similarity_top_k=15) | |
return "I'm ready, please add a question here." | |
with gr.Row(): | |
url_msg = gr.Textbox(placeholder=placeholder_url, container=False, scale=7) | |
url_btn = gr.Button(value="Set-up API and process url ✅", interactive=True) | |
url_btn.click(setup_with_url, [url_msg, api_key_text_box], msg, show_progress= "full") | |
def respond(message, chat_history): | |
response = query_engine.query(message) | |
chat_history.append((message, str(response))) | |
return chat_history | |
msg.submit(respond, [msg, chatbot], [chatbot]) | |
demo.launch() |