import gradio as gr | |
from huggingface_hub import InferenceClient | |
import os | |
import time | |
import asyncio | |
from pipeline import PromptEnhancer | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
async def advancedPromptPipeline(InputPrompt): | |
model="gpt-4o-mini" | |
if model == "gpt-4o": | |
i_cost=5/10**6 | |
o_cost=15/10**6 | |
elif model == "gpt-4o-mini": | |
i_cost=0.15/10**6 | |
o_cost=0.6/10**6 | |
enhancer = PromptEnhancer(model) | |
start_time = time.time() | |
advanced_prompt = await enhancer.enhance_prompt(input_prompt, perform_eval=False) | |
elapsed_time = time.time() - start_time | |
yield advanced_prompt["advanced_prompt"] | |
#return { | |
#"model": model, | |
#"elapsed_time": elapsed_time, | |
#"prompt_tokens": enhancer.prompt_tokens, | |
#"completion_tokens": enhancer.completion_tokens, | |
#"approximate_cost": (enhancer.prompt_tokens*i_cost)+(enhancer.completion_tokens*o_cost), | |
#"inout_prompt": input_prompt, | |
#"advanced_prompt": advanced_prompt["advanced_prompt"], | |
} | |
def respond( | |
message, | |
#history: list[tuple[str, str]], | |
#system_message, | |
#max_tokens, | |
#temperature, | |
#top_p, | |
): | |
#messages = [{"role": "system", "content": system_message}] | |
#for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# | |
#messages.append({"role": "user", "content": message}) | |
messages = [] | |
response = "" | |
advancedPromptPipeline(InputPrompt) | |
#for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
#): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
advancedPromptPipeline, | |
#respond, | |
#additional_inputs=[ | |
#gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
#gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
#gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
#gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", | |
# ), | |
#], | |
) | |
if __name__ == "__main__": | |
demo.launch() |