added pipeline.py
Browse files- pipeline.py +242 -0
pipeline.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Importing dependecies
|
2 |
+
import os
|
3 |
+
import asyncio
|
4 |
+
from openai import AsyncOpenAI
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
|
7 |
+
|
8 |
+
# Setting up the API key for single project
|
9 |
+
# 1/ create a .env file and add to it:
|
10 |
+
# OPENAI_API_KEY = the_personal_api_key
|
11 |
+
# 2/ load variables from .env file
|
12 |
+
load_dotenv()
|
13 |
+
# 3/ set up the client
|
14 |
+
client = AsyncOpenAI(
|
15 |
+
api_key=os.getenv("OPENAI_API_KEY"),
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
# Defining the PromptEnhancer class containing the necessary components for the Advanced Prompt Generation Pipeline
|
20 |
+
class PromptEnhancer:
|
21 |
+
def __init__(self, model="gpt-4o-mini", tools_dict={}):
|
22 |
+
self.model = model
|
23 |
+
self.prompt_tokens = 0
|
24 |
+
self.completion_tokens = 0
|
25 |
+
self.tools_dict = tools_dict
|
26 |
+
|
27 |
+
async def call_llm(self, prompt):
|
28 |
+
"""Call the LLM with the given prompt"""
|
29 |
+
response = await client.chat.completions.create(
|
30 |
+
model=self.model,
|
31 |
+
messages=[
|
32 |
+
{"role": "system",
|
33 |
+
"content": "You are an assistant designed to provide concise and specific information based solely on the given tasks.\
|
34 |
+
Do not include any additional information, explanations, or context beyond what is explicitly requested."
|
35 |
+
},
|
36 |
+
{"role": "user",
|
37 |
+
"content": prompt
|
38 |
+
}
|
39 |
+
],
|
40 |
+
temperature=0.0, # from 0 (precise and almost deterministic answer) to 2 (creative and almost random answer)
|
41 |
+
)
|
42 |
+
# counting the I/O tokens
|
43 |
+
self.prompt_tokens += response.usage.prompt_tokens
|
44 |
+
self.completion_tokens += response.usage.completion_tokens
|
45 |
+
|
46 |
+
return response.choices[0].message.content
|
47 |
+
|
48 |
+
async def analyze_input(self, basic_prompt):
|
49 |
+
"""Analyze the input prompt to determine its key information"""
|
50 |
+
analysis_prompt = f"""
|
51 |
+
Analyze the following {{prompt}} and generate brief answers to these key information that will be beneficial to enhance the prompt:
|
52 |
+
1. Main topic of the prompt
|
53 |
+
2. The most convenient output format for the prompt
|
54 |
+
3. Specific requirements for the prompt, if necessary
|
55 |
+
4. Suggested strategies to enhance the prompt for better output result
|
56 |
+
|
57 |
+
{{prompt}}: {basic_prompt}
|
58 |
+
|
59 |
+
Your output will be only the result of the information required above in text format.
|
60 |
+
Do not return a general explanation of the generation process.
|
61 |
+
"""
|
62 |
+
return await self.call_llm(analysis_prompt)
|
63 |
+
|
64 |
+
async def expand_instructions(self, basic_prompt, analysis):
|
65 |
+
"""Expand the basic prompt with clear, detailed instructions"""
|
66 |
+
expansion_prompt = f"""
|
67 |
+
Based on this {{analysis}}:
|
68 |
+
|
69 |
+
{analysis}
|
70 |
+
|
71 |
+
Expand the following {{basic_prompt}} following these instructions:
|
72 |
+
1. Add relevant details to clarify the prompt only if necessary
|
73 |
+
2. Suggest an appropriate persona for the AI Model
|
74 |
+
3. Generate 1-2 related examples to guide the output generation
|
75 |
+
4. Suggest an optimal output length
|
76 |
+
5. Use delimiter, {{ }}, to clearly indicate the parts of the input that should be concidered as variables
|
77 |
+
|
78 |
+
{{basic_prompt}}: {basic_prompt}
|
79 |
+
|
80 |
+
Your output will be only the result of the information required above in text format and not a dictionary format.
|
81 |
+
Make sure the generated output maintains the sructure of a prompt for an AI Model.
|
82 |
+
Make sure the generated output maintains the goal and context of the {{basic_prompt}}.
|
83 |
+
Do not include the instructions headers in the generated answer.
|
84 |
+
Do not return a general explanation of the generation process.
|
85 |
+
Do not generate an answer for the prompt.
|
86 |
+
"""
|
87 |
+
return await self.call_llm(expansion_prompt)
|
88 |
+
|
89 |
+
async def decompose_task(self, expanded_prompt):
|
90 |
+
"""Break down complex tasks into subtasks"""
|
91 |
+
decomposition_prompt = f"""
|
92 |
+
Break down the following {{prompt}} into subtasks for better output generation and follow these instructions:
|
93 |
+
1. Identify main task components and their corresponding subtasks
|
94 |
+
2. Create specific instructions for each subtask
|
95 |
+
3. Define success criteria for each subtask
|
96 |
+
|
97 |
+
{{prompt}}: {expanded_prompt}
|
98 |
+
|
99 |
+
Your output will be only the result of the task required above in text format.
|
100 |
+
Follow the (Main-task/ Sub-task/ Instructions/ Success-criteria) format.
|
101 |
+
Do not return a general explanation of the generation process.
|
102 |
+
"""
|
103 |
+
return await self.call_llm(decomposition_prompt)
|
104 |
+
|
105 |
+
async def add_reasoning(self, expanded_prompt):
|
106 |
+
"""Add instructions for showing reasoning, chain-of-thought, and self-review"""
|
107 |
+
reasoning_prompt = f"""
|
108 |
+
Based on the following {{prompt}}, suggest instructions in order to guide the AI Model to:
|
109 |
+
1. Show reasoning through using the chain-of-thought process
|
110 |
+
2. Use inner-monologue only if it is recommended to hide parts of the thought process
|
111 |
+
3. Self-review and check for missed information
|
112 |
+
|
113 |
+
{{prompt}}: {expanded_prompt}
|
114 |
+
|
115 |
+
Your output will be only the set of instructions in text format.
|
116 |
+
Do not return a general explanation of the generation process.
|
117 |
+
"""
|
118 |
+
return await self.call_llm(reasoning_prompt)
|
119 |
+
|
120 |
+
async def create_eval_criteria(self, expanded_prompt):
|
121 |
+
"""Generate evaluation criteria for the prompt output"""
|
122 |
+
evaluation_prompt = f"""
|
123 |
+
Create evaluation criteria for assessing the quality of the output for this {{prompt}}:
|
124 |
+
1. List 1-3 specific criteria
|
125 |
+
2. Briefly explain how to measure each criterion
|
126 |
+
|
127 |
+
{{prompt}}: {expanded_prompt}
|
128 |
+
|
129 |
+
Your output will be only the result of the information required above in text format.
|
130 |
+
Do not return a general explanation of the generation process.
|
131 |
+
"""
|
132 |
+
return await self.call_llm(evaluation_prompt)
|
133 |
+
|
134 |
+
async def suggest_references(self, expanded_prompt):
|
135 |
+
"""Suggest relevant references and explain how to use them"""
|
136 |
+
reference_prompt = f"""
|
137 |
+
For the following {{prompt}}, suggest relevant reference texts or sources that could help enhance the output of the prompt if possible,
|
138 |
+
and if not, do not return anything:
|
139 |
+
1. List 0-3 potential references
|
140 |
+
2. Briefly explain how to incorporate these references to enhance the prompt
|
141 |
+
|
142 |
+
{{prompt}}: {expanded_prompt}
|
143 |
+
|
144 |
+
Your output will be only the result of the information required above in a dictionary called "References" containing the references titles as keys,
|
145 |
+
and their corresponding explanation of incorporation as values. If no references will be suggested, return an empty dictionary.
|
146 |
+
Do not return a general explanation of the generation process.
|
147 |
+
"""
|
148 |
+
return await self.call_llm(reference_prompt)
|
149 |
+
|
150 |
+
async def suggest_tools(self, expanded_prompt, tools_dict):
|
151 |
+
"""Suggest relevant external tools or APIs"""
|
152 |
+
tool_prompt = f"""
|
153 |
+
For the following {{prompt}}, suggest relevant external tools from the provided {{tools_dict}} that can enhance the prompt for better execution.
|
154 |
+
If the prompt does not require tools for its output, it is highly-recommended to not return any tools:
|
155 |
+
1. List 0-3 potential tools/APIs
|
156 |
+
2. Briefly explain how to use these tools within the prompt
|
157 |
+
|
158 |
+
{{prompt}}: {expanded_prompt}
|
159 |
+
{{tools_dict}}: {tools_dict}
|
160 |
+
|
161 |
+
Your output will be only the result of the information required above in a dictionary containing the suggested tools as keys,
|
162 |
+
and their corresponding way of usage with the prompt as values. If no tools will be suggested, return an empty dictionary.
|
163 |
+
Do not return a general explanation of the generation process.
|
164 |
+
"""
|
165 |
+
return await self.call_llm(tool_prompt)
|
166 |
+
|
167 |
+
async def assemble_prompt(self, components):
|
168 |
+
"""Assemble all components into a cohesive advanced prompt"""
|
169 |
+
assembly_prompt = f"""
|
170 |
+
Assemble all the following {{components}} into a cohesive, and well-structured advanced prompt and do not generate a response for the prompt.
|
171 |
+
Make sure to combine the {{reasoning_process}} and {{subtasks}} sections into one section called {{reasoning_process_and_subtasks}}.
|
172 |
+
|
173 |
+
{{components}}: {components}
|
174 |
+
|
175 |
+
Your output will be only the result of the tasks required above,
|
176 |
+
which is an advanced coherent prompt generated from the combination of the given components dictionary.
|
177 |
+
Keep only the {{reasoning_process_and_subtasks}} section instead of the {{reasoning_process}} and {{subtasks}} sections in the output.
|
178 |
+
Ensure that the assembled prompt maintains the delimiter structure of variables and the suggested persona.
|
179 |
+
Make sure that each sub-section of the prompt is clear and has a title.
|
180 |
+
The output is in plain text format and not a dictionary format.
|
181 |
+
Do not return a general explanation of the generation process.
|
182 |
+
Take the return-to-line symbol into consideration.
|
183 |
+
Remove the "**Expanded Prompt**" header.
|
184 |
+
"""
|
185 |
+
return await self.call_llm(assembly_prompt)
|
186 |
+
|
187 |
+
async def auto_eval(self, assembled_prompt, evaluation_criteria):
|
188 |
+
"""Perform Auto-Evaluation and Auto-Adjustment"""
|
189 |
+
auto_eval_prompt = f"""
|
190 |
+
Perform any minor adjustments on the given {{prompt}} based on how likely its output will satisfy these {{evaluation_criteria}}.
|
191 |
+
Only perform minor changes if it is necessary and return the updated prompt as output.
|
192 |
+
If no changes are necessary, do not change the prompt and return it as output.
|
193 |
+
|
194 |
+
{{prompt}}: {assembled_prompt}
|
195 |
+
{{evaluation_criteria}}: {evaluation_criteria}
|
196 |
+
|
197 |
+
Your output will be only the result of the tasks required above, which is an updated version of the {{prompt}}, in text format.
|
198 |
+
Make sure to keep the {{evaluation_criteria}} in the output prompt.
|
199 |
+
Do not return a general explanation of the generation process.
|
200 |
+
Make sure there is no generated answer for the prompt.
|
201 |
+
Make sure to maintain the stucture of the {{prompt}}.
|
202 |
+
"""
|
203 |
+
return await self.call_llm(auto_eval_prompt)
|
204 |
+
|
205 |
+
async def enhance_prompt(self, basic_prompt, perform_eval=False):
|
206 |
+
"""Main method to enhance a basic prompt to an advanced one"""
|
207 |
+
analysis = await self.analyze_input(basic_prompt)
|
208 |
+
expanded_prompt = await self.expand_instructions(basic_prompt, analysis)
|
209 |
+
|
210 |
+
evaluation_criteria, references, subtasks, reasoning, tools = await asyncio.gather(
|
211 |
+
self.create_eval_criteria(expanded_prompt),
|
212 |
+
self.suggest_references(expanded_prompt),
|
213 |
+
self.decompose_task(expanded_prompt),
|
214 |
+
self.add_reasoning(expanded_prompt),
|
215 |
+
self.suggest_tools(expanded_prompt, tools_dict={}),
|
216 |
+
)
|
217 |
+
|
218 |
+
components = {
|
219 |
+
"expanded_prompt": expanded_prompt,
|
220 |
+
"references": references,
|
221 |
+
"subtasks": subtasks,
|
222 |
+
"tools": tools,
|
223 |
+
"reasoning_process": reasoning,
|
224 |
+
"evaluation_criteria": evaluation_criteria,
|
225 |
+
|
226 |
+
}
|
227 |
+
|
228 |
+
assembled_prompt = await self.assemble_prompt(components)
|
229 |
+
|
230 |
+
if perform_eval:
|
231 |
+
eveluated_prompt = await self.auto_eval(assembled_prompt, evaluation_criteria)
|
232 |
+
advanced_prompt = eveluated_prompt
|
233 |
+
else:
|
234 |
+
advanced_prompt = assembled_prompt
|
235 |
+
|
236 |
+
return {
|
237 |
+
"advanced_prompt": advanced_prompt,
|
238 |
+
"assembled_prompt": assembled_prompt,
|
239 |
+
"components": components,
|
240 |
+
"analysis": analysis,
|
241 |
+
}
|
242 |
+
|