File size: 20,767 Bytes
fb6c2da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a056b0b
 
fb6c2da
a056b0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb6c2da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e3fd43
fb6c2da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e3fd43
fb6c2da
 
 
 
 
 
 
4f29a2b
fb6c2da
 
 
1e3fd43
 
fb6c2da
 
 
1e3fd43
fb6c2da
 
a056b0b
 
 
 
 
 
 
fb6c2da
1e3fd43
 
fb6c2da
 
1e3fd43
fb6c2da
 
 
 
 
 
 
 
 
 
 
1e3fd43
 
 
 
 
 
 
 
fb6c2da
1e3fd43
 
 
 
 
fc5fab1
 
 
 
 
fb6c2da
 
1e3fd43
 
4f29a2b
fb6c2da
1e3fd43
fb6c2da
 
 
 
 
4f29a2b
fc5fab1
 
 
1e3fd43
fb6c2da
 
1e3fd43
fb6c2da
 
 
1e3fd43
fb6c2da
1e3fd43
 
fb6c2da
 
1e3fd43
fb6c2da
1e3fd43
fb6c2da
 
1e3fd43
fb6c2da
1e3fd43
fb6c2da
 
 
1e3fd43
fb6c2da
 
1e3fd43
 
 
 
 
 
 
 
 
 
 
fb6c2da
 
 
 
 
1e3fd43
fb6c2da
 
 
 
a056b0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee11c4c
a056b0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb6c2da
 
4f29a2b
fb6c2da
1e3fd43
fb6c2da
 
 
 
b301b55
4f29a2b
fc5fab1
 
 
1e3fd43
fb6c2da
 
 
 
 
 
 
1e3fd43
fb6c2da
 
1e3fd43
 
fb6c2da
 
 
1e3fd43
fb6c2da
 
 
 
 
 
1e3fd43
 
 
 
 
 
 
 
 
 
 
 
fb6c2da
 
 
 
1e3fd43
fb6c2da
 
 
 
 
1e3fd43
 
4f29a2b
fb6c2da
1e3fd43
fb6c2da
 
 
 
 
4f29a2b
fc5fab1
 
 
1e3fd43
fb6c2da
 
1e3fd43
fb6c2da
 
 
1e3fd43
fb6c2da
 
1e3fd43
fb6c2da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e3fd43
 
fb6c2da
1e3fd43
fb6c2da
1e3fd43
fb6c2da
 
 
 
 
 
 
1e3fd43
 
 
 
 
 
 
 
 
 
 
fb6c2da
 
 
 
 
1e3fd43
fb6c2da
 
1e3fd43
 
fb6c2da
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import torch
from basicsr.utils import img2tensor, tensor2img
from pytorch_lightning import seed_everything
from ldm.models.diffusion.plms import PLMSSampler
from ldm.modules.encoders.adapter import Adapter
from ldm.util import instantiate_from_config
from model_edge import pidinet
import gradio as gr
from omegaconf import OmegaConf
import mmcv
from mmdet.apis import inference_detector, init_detector
from mmpose.apis import (inference_top_down_pose_model, init_pose_model, process_mmdet_results, vis_pose_result)
import os
import cv2
import numpy as np
from seger import seger, Colorize
import torch.nn.functional as F

def preprocessing(image, device):
    # Resize
    scale = 640 / max(image.shape[:2])
    image = cv2.resize(image, dsize=None, fx=scale, fy=scale)
    raw_image = image.astype(np.uint8)

    # Subtract mean values
    image = image.astype(np.float32)
    image -= np.array(
        [
            float(104.008),
            float(116.669),
            float(122.675),
        ]
    )

    # Convert to torch.Tensor and add "batch" axis
    image = torch.from_numpy(image.transpose(2, 0, 1)).float().unsqueeze(0)
    image = image.to(device)

    return image, raw_image

def imshow_keypoints(img,
                     pose_result,
                     skeleton=None,
                     kpt_score_thr=0.1,
                     pose_kpt_color=None,
                     pose_link_color=None,
                     radius=4,
                     thickness=1):
    """Draw keypoints and links on an image.

    Args:
            img (ndarry): The image to draw poses on.
            pose_result (list[kpts]): The poses to draw. Each element kpts is
                a set of K keypoints as an Kx3 numpy.ndarray, where each
                keypoint is represented as x, y, score.
            kpt_score_thr (float, optional): Minimum score of keypoints
                to be shown. Default: 0.3.
            pose_kpt_color (np.array[Nx3]`): Color of N keypoints. If None,
                the keypoint will not be drawn.
            pose_link_color (np.array[Mx3]): Color of M links. If None, the
                links will not be drawn.
            thickness (int): Thickness of lines.
    """

    img_h, img_w, _ = img.shape
    img = np.zeros(img.shape)

    for idx, kpts in enumerate(pose_result):
        if idx > 1:
            continue
        kpts = kpts['keypoints']
        # print(kpts)
        kpts = np.array(kpts, copy=False)

        # draw each point on image
        if pose_kpt_color is not None:
            assert len(pose_kpt_color) == len(kpts)

            for kid, kpt in enumerate(kpts):
                x_coord, y_coord, kpt_score = int(kpt[0]), int(kpt[1]), kpt[2]

                if kpt_score < kpt_score_thr or pose_kpt_color[kid] is None:
                    # skip the point that should not be drawn
                    continue

                color = tuple(int(c) for c in pose_kpt_color[kid])
                cv2.circle(img, (int(x_coord), int(y_coord)), radius, color, -1)

        # draw links
        if skeleton is not None and pose_link_color is not None:
            assert len(pose_link_color) == len(skeleton)

            for sk_id, sk in enumerate(skeleton):
                pos1 = (int(kpts[sk[0], 0]), int(kpts[sk[0], 1]))
                pos2 = (int(kpts[sk[1], 0]), int(kpts[sk[1], 1]))

                if (pos1[0] <= 0 or pos1[0] >= img_w or pos1[1] <= 0 or pos1[1] >= img_h or pos2[0] <= 0
                        or pos2[0] >= img_w or pos2[1] <= 0 or pos2[1] >= img_h or kpts[sk[0], 2] < kpt_score_thr
                        or kpts[sk[1], 2] < kpt_score_thr or pose_link_color[sk_id] is None):
                    # skip the link that should not be drawn
                    continue
                color = tuple(int(c) for c in pose_link_color[sk_id])
                cv2.line(img, pos1, pos2, color, thickness=thickness)

    return img


def load_model_from_config(config, ckpt, verbose=False):
    print(f"Loading model from {ckpt}")
    pl_sd = torch.load(ckpt, map_location="cpu")
    if "global_step" in pl_sd:
        print(f"Global Step: {pl_sd['global_step']}")
    if "state_dict" in pl_sd:
        sd = pl_sd["state_dict"]
    else:
        sd = pl_sd
    model = instantiate_from_config(config.model)
    _, _ = model.load_state_dict(sd, strict=False)

    model.cuda()
    model.eval()
    return model


class Model_all:
    def __init__(self, device='cpu'):
        # common part
        self.device = device
        self.config = OmegaConf.load("configs/stable-diffusion/app.yaml")
        self.config.model.params.cond_stage_config.params.device = device
        self.base_model = load_model_from_config(self.config, "models/sd-v1-4.ckpt").to(device)
        self.current_base = 'sd-v1-4.ckpt'
        self.sampler = PLMSSampler(self.base_model)

        # sketch part
        self.model_sketch = Adapter(channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True,
                                    use_conv=False).to(device)
        self.model_sketch.load_state_dict(torch.load("models/t2iadapter_sketch_sd14v1.pth", map_location=device))
        self.model_edge = pidinet()
        ckp = torch.load('models/table5_pidinet.pth', map_location='cpu')['state_dict']
        self.model_edge.load_state_dict({k.replace('module.', ''): v for k, v in ckp.items()})
        self.model_edge.to(device)

        # segmentation part
        self.model_seger = seger().to(device)
        self.model_seger.eval()
        self.coler = Colorize(n=182)
        self.model_seg = Adapter(cin=int(3*64), channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False).to(device)
        self.model_seg.load_state_dict(torch.load("models/t2iadapter_seg_sd14v1.pth", map_location=device))

        # keypose part
        self.model_pose = Adapter(cin=int(3 * 64), channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True,
                                  use_conv=False).to(device)
        self.model_pose.load_state_dict(torch.load("models/t2iadapter_keypose_sd14v1.pth", map_location=device))
        ## mmpose
        det_config = 'models/faster_rcnn_r50_fpn_coco.py'
        det_checkpoint = 'models/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'
        pose_config = 'models/hrnet_w48_coco_256x192.py'
        pose_checkpoint = 'models/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth'
        self.det_cat_id = 1
        self.bbox_thr = 0.2
        ## detector
        det_config_mmcv = mmcv.Config.fromfile(det_config)
        self.det_model = init_detector(det_config_mmcv, det_checkpoint, device=device)
        pose_config_mmcv = mmcv.Config.fromfile(pose_config)
        self.pose_model = init_pose_model(pose_config_mmcv, pose_checkpoint, device=device)
        ## color
        self.skeleton = [[15, 13], [13, 11], [16, 14], [14, 12], [11, 12], [5, 11], [6, 12], [5, 6], [5, 7], [6, 8],
                         [7, 9], [8, 10],
                         [1, 2], [0, 1], [0, 2], [1, 3], [2, 4], [3, 5], [4, 6]]
        self.pose_kpt_color = [[51, 153, 255], [51, 153, 255], [51, 153, 255], [51, 153, 255], [51, 153, 255],
                               [0, 255, 0],
                               [255, 128, 0], [0, 255, 0], [255, 128, 0], [0, 255, 0], [255, 128, 0], [0, 255, 0],
                               [255, 128, 0],
                               [0, 255, 0], [255, 128, 0], [0, 255, 0], [255, 128, 0]]
        self.pose_link_color = [[0, 255, 0], [0, 255, 0], [255, 128, 0], [255, 128, 0],
                                [51, 153, 255], [51, 153, 255], [51, 153, 255], [51, 153, 255], [0, 255, 0],
                                [255, 128, 0],
                                [0, 255, 0], [255, 128, 0], [51, 153, 255], [51, 153, 255], [51, 153, 255],
                                [51, 153, 255],
                                [51, 153, 255], [51, 153, 255], [51, 153, 255]]
    
    def load_vae(self):
        vae_sd = torch.load(os.path.join('models', 'anything-v4.0.vae.pt'), map_location="cuda")
        sd = vae_sd["state_dict"]
        self.base_model.first_stage_model.load_state_dict(sd, strict=False)

    @torch.no_grad()
    def process_sketch(self, input_img, type_in, color_back, prompt, neg_prompt, pos_prompt, fix_sample, scale,
                       con_strength, base_model):
        if self.current_base != base_model:
            ckpt = os.path.join("models", base_model)
            pl_sd = torch.load(ckpt, map_location="cuda")
            if "state_dict" in pl_sd:
                sd = pl_sd["state_dict"]
            else:
                sd = pl_sd
            self.base_model.load_state_dict(sd, strict=False)
            self.current_base = base_model
            if 'anything' in base_model.lower():
                self.load_vae()

        con_strength = int((1 - con_strength) * 50)
        if fix_sample == 'True':
            seed_everything(42)
        im = cv2.resize(input_img, (512, 512))

        if type_in == 'Sketch':
            if color_back == 'White':
                im = 255 - im
            im_edge = im.copy()
            im = img2tensor(im)[0].unsqueeze(0).unsqueeze(0) / 255.
            im = im > 0.5
            im = im.float()
        elif type_in == 'Image':
            im = img2tensor(im).unsqueeze(0) / 255.
            im = self.model_edge(im.to(self.device))[-1]
            im = im > 0.5
            im = im.float()
            im_edge = tensor2img(im)

        # extract condition features
        c = self.base_model.get_learned_conditioning([prompt + ', ' + pos_prompt])
        nc = self.base_model.get_learned_conditioning([neg_prompt])
        features_adapter = self.model_sketch(im.to(self.device))
        shape = [4, 64, 64]

        # sampling
        samples_ddim, _ = self.sampler.sample(S=50,
                                              conditioning=c,
                                              batch_size=1,
                                              shape=shape,
                                              verbose=False,
                                              unconditional_guidance_scale=scale,
                                              unconditional_conditioning=nc,
                                              eta=0.0,
                                              x_T=None,
                                              features_adapter1=features_adapter,
                                              mode='sketch',
                                              con_strength=con_strength)

        x_samples_ddim = self.base_model.decode_first_stage(samples_ddim)
        x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
        x_samples_ddim = x_samples_ddim.to('cpu')
        x_samples_ddim = x_samples_ddim.permute(0, 2, 3, 1).numpy()[0]
        x_samples_ddim = 255. * x_samples_ddim
        x_samples_ddim = x_samples_ddim.astype(np.uint8)

        return [im_edge, x_samples_ddim]

    @torch.no_grad()
    def process_seg(self, input_img, type_in, prompt, neg_prompt, pos_prompt, fix_sample, scale,
                       con_strength, base_model):
        if self.current_base != base_model:
            ckpt = os.path.join("models", base_model)
            pl_sd = torch.load(ckpt, map_location="cuda")
            if "state_dict" in pl_sd:
                sd = pl_sd["state_dict"]
            else:
                sd = pl_sd
            self.base_model.load_state_dict(sd, strict=False)
            self.current_base = base_model
            if 'anything' in base_model.lower():
                self.load_vae()

        con_strength = int((1 - con_strength) * 50)
        if fix_sample == 'True':
            seed_everything(42)
        im = cv2.resize(input_img, (512, 512))

        if type_in == 'Segmentation':
            im_seg = im.copy()
            im = img2tensor(im).unsqueeze(0) / 255.
            labelmap = im.float()
        elif type_in == 'Image':
            im, _ = preprocessing(im, self.device)
            _, _, H, W = im.shape

            # Image -> Probability map
            logits = self.model_seger(im)
            logits = F.interpolate(logits, size=(H, W), mode="bilinear", align_corners=False)
            probs = F.softmax(logits, dim=1)[0]
            probs = probs.cpu().data.numpy()
            labelmap = np.argmax(probs, axis=0)

            labelmap = self.coler(labelmap)
            labelmap = np.transpose(labelmap, (1,2,0))
            labelmap = cv2.resize(labelmap, (512, 512))
            labelmap = img2tensor(labelmap, bgr2rgb=False, float32=True)/255.
            im_seg = tensor2img(labelmap)[:,:,::-1]
            labelmap = labelmap.unsqueeze(0)

        # extract condition features
        c = self.base_model.get_learned_conditioning([prompt + ', ' + pos_prompt])
        nc = self.base_model.get_learned_conditioning([neg_prompt])
        features_adapter = self.model_seg(labelmap.to(self.device))
        shape = [4, 64, 64]

        # sampling
        samples_ddim, _ = self.sampler.sample(S=50,
                                              conditioning=c,
                                              batch_size=1,
                                              shape=shape,
                                              verbose=False,
                                              unconditional_guidance_scale=scale,
                                              unconditional_conditioning=nc,
                                              eta=0.0,
                                              x_T=None,
                                              features_adapter1=features_adapter,
                                              mode='sketch',
                                              con_strength=con_strength)

        x_samples_ddim = self.base_model.decode_first_stage(samples_ddim)
        x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
        x_samples_ddim = x_samples_ddim.to('cpu')
        x_samples_ddim = x_samples_ddim.permute(0, 2, 3, 1).numpy()[0]
        x_samples_ddim = 255. * x_samples_ddim
        x_samples_ddim = x_samples_ddim.astype(np.uint8)

        return [im_seg, x_samples_ddim]

    @torch.no_grad()
    def process_draw(self, input_img, prompt, neg_prompt, pos_prompt, fix_sample, scale, con_strength, base_model):
        if self.current_base != base_model:
            ckpt = os.path.join("models", base_model)
            pl_sd = torch.load(ckpt, map_location="cuda")
            if "state_dict" in pl_sd:
                sd = pl_sd["state_dict"]
            else:
                sd = pl_sd
            self.base_model.load_state_dict(sd, strict=False)
            self.current_base = base_model
            if 'anything' in base_model.lower():
                self.load_vae()

        con_strength = int((1 - con_strength) * 50)
        if fix_sample == 'True':
            seed_everything(42)
        input_img = input_img['mask']
        c = input_img[:, :, 0:3].astype(np.float32)
        a = input_img[:, :, 3:4].astype(np.float32) / 255.0
        im = c * a + 255.0 * (1.0 - a)
        im = im.clip(0, 255).astype(np.uint8)
        im = cv2.resize(im, (512, 512))

        im_edge = im.copy()
        im = img2tensor(im)[0].unsqueeze(0).unsqueeze(0) / 255.
        im = im > 0.5
        im = im.float()

        # extract condition features
        c = self.base_model.get_learned_conditioning([prompt + ', ' + pos_prompt])
        nc = self.base_model.get_learned_conditioning([neg_prompt])
        features_adapter = self.model_sketch(im.to(self.device))
        shape = [4, 64, 64]

        # sampling
        samples_ddim, _ = self.sampler.sample(S=50,
                                              conditioning=c,
                                              batch_size=1,
                                              shape=shape,
                                              verbose=False,
                                              unconditional_guidance_scale=scale,
                                              unconditional_conditioning=nc,
                                              eta=0.0,
                                              x_T=None,
                                              features_adapter1=features_adapter,
                                              mode='sketch',
                                              con_strength=con_strength)

        x_samples_ddim = self.base_model.decode_first_stage(samples_ddim)
        x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
        x_samples_ddim = x_samples_ddim.to('cpu')
        x_samples_ddim = x_samples_ddim.permute(0, 2, 3, 1).numpy()[0]
        x_samples_ddim = 255. * x_samples_ddim
        x_samples_ddim = x_samples_ddim.astype(np.uint8)

        return [im_edge, x_samples_ddim]

    @torch.no_grad()
    def process_keypose(self, input_img, type_in, prompt, neg_prompt, pos_prompt, fix_sample, scale, con_strength,
                        base_model):
        if self.current_base != base_model:
            ckpt = os.path.join("models", base_model)
            pl_sd = torch.load(ckpt, map_location="cuda")
            if "state_dict" in pl_sd:
                sd = pl_sd["state_dict"]
            else:
                sd = pl_sd
            self.base_model.load_state_dict(sd, strict=False)
            self.current_base = base_model
            if 'anything' in base_model.lower():
                self.load_vae()

        con_strength = int((1 - con_strength) * 50)
        if fix_sample == 'True':
            seed_everything(42)
        im = cv2.resize(input_img, (512, 512))

        if type_in == 'Keypose':
            im_pose = im.copy()
            im = img2tensor(im).unsqueeze(0) / 255.
        elif type_in == 'Image':
            image = im.copy()
            im = img2tensor(im).unsqueeze(0) / 255.
            mmdet_results = inference_detector(self.det_model, image)
            # keep the person class bounding boxes.
            person_results = process_mmdet_results(mmdet_results, self.det_cat_id)

            # optional
            return_heatmap = False
            dataset = self.pose_model.cfg.data['test']['type']

            # e.g. use ('backbone', ) to return backbone feature
            output_layer_names = None
            pose_results, _ = inference_top_down_pose_model(
                self.pose_model,
                image,
                person_results,
                bbox_thr=self.bbox_thr,
                format='xyxy',
                dataset=dataset,
                dataset_info=None,
                return_heatmap=return_heatmap,
                outputs=output_layer_names)

            # show the results
            im_pose = imshow_keypoints(
                image,
                pose_results,
                skeleton=self.skeleton,
                pose_kpt_color=self.pose_kpt_color,
                pose_link_color=self.pose_link_color,
                radius=2,
                thickness=2)
        im_pose = cv2.resize(im_pose, (512, 512))

        # extract condition features
        c = self.base_model.get_learned_conditioning([prompt + ', ' + pos_prompt])
        nc = self.base_model.get_learned_conditioning([neg_prompt])
        pose = img2tensor(im_pose, bgr2rgb=True, float32=True) / 255.
        pose = pose.unsqueeze(0)
        features_adapter = self.model_pose(pose.to(self.device))

        shape = [4, 64, 64]

        # sampling
        samples_ddim, _ = self.sampler.sample(S=50,
                                              conditioning=c,
                                              batch_size=1,
                                              shape=shape,
                                              verbose=False,
                                              unconditional_guidance_scale=scale,
                                              unconditional_conditioning=nc,
                                              eta=0.0,
                                              x_T=None,
                                              features_adapter1=features_adapter,
                                              mode='sketch',
                                              con_strength=con_strength)

        x_samples_ddim = self.base_model.decode_first_stage(samples_ddim)
        x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
        x_samples_ddim = x_samples_ddim.to('cpu')
        x_samples_ddim = x_samples_ddim.permute(0, 2, 3, 1).numpy()[0]
        x_samples_ddim = 255. * x_samples_ddim
        x_samples_ddim = x_samples_ddim.astype(np.uint8)

        return [im_pose[:, :, ::-1].astype(np.uint8), x_samples_ddim]


if __name__ == '__main__':
    model = Model_all('cpu')