Spaces:
Runtime error
Runtime error
File size: 20,767 Bytes
fb6c2da a056b0b fb6c2da a056b0b fb6c2da 1e3fd43 fb6c2da 1e3fd43 fb6c2da 4f29a2b fb6c2da 1e3fd43 fb6c2da 1e3fd43 fb6c2da a056b0b fb6c2da 1e3fd43 fb6c2da 1e3fd43 fb6c2da 1e3fd43 fb6c2da 1e3fd43 fc5fab1 fb6c2da 1e3fd43 4f29a2b fb6c2da 1e3fd43 fb6c2da 4f29a2b fc5fab1 1e3fd43 fb6c2da 1e3fd43 fb6c2da 1e3fd43 fb6c2da 1e3fd43 fb6c2da 1e3fd43 fb6c2da 1e3fd43 fb6c2da 1e3fd43 fb6c2da 1e3fd43 fb6c2da 1e3fd43 fb6c2da 1e3fd43 fb6c2da 1e3fd43 fb6c2da a056b0b ee11c4c a056b0b fb6c2da 4f29a2b fb6c2da 1e3fd43 fb6c2da b301b55 4f29a2b fc5fab1 1e3fd43 fb6c2da 1e3fd43 fb6c2da 1e3fd43 fb6c2da 1e3fd43 fb6c2da 1e3fd43 fb6c2da 1e3fd43 fb6c2da 1e3fd43 4f29a2b fb6c2da 1e3fd43 fb6c2da 4f29a2b fc5fab1 1e3fd43 fb6c2da 1e3fd43 fb6c2da 1e3fd43 fb6c2da 1e3fd43 fb6c2da 1e3fd43 fb6c2da 1e3fd43 fb6c2da 1e3fd43 fb6c2da 1e3fd43 fb6c2da 1e3fd43 fb6c2da 1e3fd43 fb6c2da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
import torch
from basicsr.utils import img2tensor, tensor2img
from pytorch_lightning import seed_everything
from ldm.models.diffusion.plms import PLMSSampler
from ldm.modules.encoders.adapter import Adapter
from ldm.util import instantiate_from_config
from model_edge import pidinet
import gradio as gr
from omegaconf import OmegaConf
import mmcv
from mmdet.apis import inference_detector, init_detector
from mmpose.apis import (inference_top_down_pose_model, init_pose_model, process_mmdet_results, vis_pose_result)
import os
import cv2
import numpy as np
from seger import seger, Colorize
import torch.nn.functional as F
def preprocessing(image, device):
# Resize
scale = 640 / max(image.shape[:2])
image = cv2.resize(image, dsize=None, fx=scale, fy=scale)
raw_image = image.astype(np.uint8)
# Subtract mean values
image = image.astype(np.float32)
image -= np.array(
[
float(104.008),
float(116.669),
float(122.675),
]
)
# Convert to torch.Tensor and add "batch" axis
image = torch.from_numpy(image.transpose(2, 0, 1)).float().unsqueeze(0)
image = image.to(device)
return image, raw_image
def imshow_keypoints(img,
pose_result,
skeleton=None,
kpt_score_thr=0.1,
pose_kpt_color=None,
pose_link_color=None,
radius=4,
thickness=1):
"""Draw keypoints and links on an image.
Args:
img (ndarry): The image to draw poses on.
pose_result (list[kpts]): The poses to draw. Each element kpts is
a set of K keypoints as an Kx3 numpy.ndarray, where each
keypoint is represented as x, y, score.
kpt_score_thr (float, optional): Minimum score of keypoints
to be shown. Default: 0.3.
pose_kpt_color (np.array[Nx3]`): Color of N keypoints. If None,
the keypoint will not be drawn.
pose_link_color (np.array[Mx3]): Color of M links. If None, the
links will not be drawn.
thickness (int): Thickness of lines.
"""
img_h, img_w, _ = img.shape
img = np.zeros(img.shape)
for idx, kpts in enumerate(pose_result):
if idx > 1:
continue
kpts = kpts['keypoints']
# print(kpts)
kpts = np.array(kpts, copy=False)
# draw each point on image
if pose_kpt_color is not None:
assert len(pose_kpt_color) == len(kpts)
for kid, kpt in enumerate(kpts):
x_coord, y_coord, kpt_score = int(kpt[0]), int(kpt[1]), kpt[2]
if kpt_score < kpt_score_thr or pose_kpt_color[kid] is None:
# skip the point that should not be drawn
continue
color = tuple(int(c) for c in pose_kpt_color[kid])
cv2.circle(img, (int(x_coord), int(y_coord)), radius, color, -1)
# draw links
if skeleton is not None and pose_link_color is not None:
assert len(pose_link_color) == len(skeleton)
for sk_id, sk in enumerate(skeleton):
pos1 = (int(kpts[sk[0], 0]), int(kpts[sk[0], 1]))
pos2 = (int(kpts[sk[1], 0]), int(kpts[sk[1], 1]))
if (pos1[0] <= 0 or pos1[0] >= img_w or pos1[1] <= 0 or pos1[1] >= img_h or pos2[0] <= 0
or pos2[0] >= img_w or pos2[1] <= 0 or pos2[1] >= img_h or kpts[sk[0], 2] < kpt_score_thr
or kpts[sk[1], 2] < kpt_score_thr or pose_link_color[sk_id] is None):
# skip the link that should not be drawn
continue
color = tuple(int(c) for c in pose_link_color[sk_id])
cv2.line(img, pos1, pos2, color, thickness=thickness)
return img
def load_model_from_config(config, ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
if "state_dict" in pl_sd:
sd = pl_sd["state_dict"]
else:
sd = pl_sd
model = instantiate_from_config(config.model)
_, _ = model.load_state_dict(sd, strict=False)
model.cuda()
model.eval()
return model
class Model_all:
def __init__(self, device='cpu'):
# common part
self.device = device
self.config = OmegaConf.load("configs/stable-diffusion/app.yaml")
self.config.model.params.cond_stage_config.params.device = device
self.base_model = load_model_from_config(self.config, "models/sd-v1-4.ckpt").to(device)
self.current_base = 'sd-v1-4.ckpt'
self.sampler = PLMSSampler(self.base_model)
# sketch part
self.model_sketch = Adapter(channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True,
use_conv=False).to(device)
self.model_sketch.load_state_dict(torch.load("models/t2iadapter_sketch_sd14v1.pth", map_location=device))
self.model_edge = pidinet()
ckp = torch.load('models/table5_pidinet.pth', map_location='cpu')['state_dict']
self.model_edge.load_state_dict({k.replace('module.', ''): v for k, v in ckp.items()})
self.model_edge.to(device)
# segmentation part
self.model_seger = seger().to(device)
self.model_seger.eval()
self.coler = Colorize(n=182)
self.model_seg = Adapter(cin=int(3*64), channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False).to(device)
self.model_seg.load_state_dict(torch.load("models/t2iadapter_seg_sd14v1.pth", map_location=device))
# keypose part
self.model_pose = Adapter(cin=int(3 * 64), channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True,
use_conv=False).to(device)
self.model_pose.load_state_dict(torch.load("models/t2iadapter_keypose_sd14v1.pth", map_location=device))
## mmpose
det_config = 'models/faster_rcnn_r50_fpn_coco.py'
det_checkpoint = 'models/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'
pose_config = 'models/hrnet_w48_coco_256x192.py'
pose_checkpoint = 'models/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth'
self.det_cat_id = 1
self.bbox_thr = 0.2
## detector
det_config_mmcv = mmcv.Config.fromfile(det_config)
self.det_model = init_detector(det_config_mmcv, det_checkpoint, device=device)
pose_config_mmcv = mmcv.Config.fromfile(pose_config)
self.pose_model = init_pose_model(pose_config_mmcv, pose_checkpoint, device=device)
## color
self.skeleton = [[15, 13], [13, 11], [16, 14], [14, 12], [11, 12], [5, 11], [6, 12], [5, 6], [5, 7], [6, 8],
[7, 9], [8, 10],
[1, 2], [0, 1], [0, 2], [1, 3], [2, 4], [3, 5], [4, 6]]
self.pose_kpt_color = [[51, 153, 255], [51, 153, 255], [51, 153, 255], [51, 153, 255], [51, 153, 255],
[0, 255, 0],
[255, 128, 0], [0, 255, 0], [255, 128, 0], [0, 255, 0], [255, 128, 0], [0, 255, 0],
[255, 128, 0],
[0, 255, 0], [255, 128, 0], [0, 255, 0], [255, 128, 0]]
self.pose_link_color = [[0, 255, 0], [0, 255, 0], [255, 128, 0], [255, 128, 0],
[51, 153, 255], [51, 153, 255], [51, 153, 255], [51, 153, 255], [0, 255, 0],
[255, 128, 0],
[0, 255, 0], [255, 128, 0], [51, 153, 255], [51, 153, 255], [51, 153, 255],
[51, 153, 255],
[51, 153, 255], [51, 153, 255], [51, 153, 255]]
def load_vae(self):
vae_sd = torch.load(os.path.join('models', 'anything-v4.0.vae.pt'), map_location="cuda")
sd = vae_sd["state_dict"]
self.base_model.first_stage_model.load_state_dict(sd, strict=False)
@torch.no_grad()
def process_sketch(self, input_img, type_in, color_back, prompt, neg_prompt, pos_prompt, fix_sample, scale,
con_strength, base_model):
if self.current_base != base_model:
ckpt = os.path.join("models", base_model)
pl_sd = torch.load(ckpt, map_location="cuda")
if "state_dict" in pl_sd:
sd = pl_sd["state_dict"]
else:
sd = pl_sd
self.base_model.load_state_dict(sd, strict=False)
self.current_base = base_model
if 'anything' in base_model.lower():
self.load_vae()
con_strength = int((1 - con_strength) * 50)
if fix_sample == 'True':
seed_everything(42)
im = cv2.resize(input_img, (512, 512))
if type_in == 'Sketch':
if color_back == 'White':
im = 255 - im
im_edge = im.copy()
im = img2tensor(im)[0].unsqueeze(0).unsqueeze(0) / 255.
im = im > 0.5
im = im.float()
elif type_in == 'Image':
im = img2tensor(im).unsqueeze(0) / 255.
im = self.model_edge(im.to(self.device))[-1]
im = im > 0.5
im = im.float()
im_edge = tensor2img(im)
# extract condition features
c = self.base_model.get_learned_conditioning([prompt + ', ' + pos_prompt])
nc = self.base_model.get_learned_conditioning([neg_prompt])
features_adapter = self.model_sketch(im.to(self.device))
shape = [4, 64, 64]
# sampling
samples_ddim, _ = self.sampler.sample(S=50,
conditioning=c,
batch_size=1,
shape=shape,
verbose=False,
unconditional_guidance_scale=scale,
unconditional_conditioning=nc,
eta=0.0,
x_T=None,
features_adapter1=features_adapter,
mode='sketch',
con_strength=con_strength)
x_samples_ddim = self.base_model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_samples_ddim = x_samples_ddim.to('cpu')
x_samples_ddim = x_samples_ddim.permute(0, 2, 3, 1).numpy()[0]
x_samples_ddim = 255. * x_samples_ddim
x_samples_ddim = x_samples_ddim.astype(np.uint8)
return [im_edge, x_samples_ddim]
@torch.no_grad()
def process_seg(self, input_img, type_in, prompt, neg_prompt, pos_prompt, fix_sample, scale,
con_strength, base_model):
if self.current_base != base_model:
ckpt = os.path.join("models", base_model)
pl_sd = torch.load(ckpt, map_location="cuda")
if "state_dict" in pl_sd:
sd = pl_sd["state_dict"]
else:
sd = pl_sd
self.base_model.load_state_dict(sd, strict=False)
self.current_base = base_model
if 'anything' in base_model.lower():
self.load_vae()
con_strength = int((1 - con_strength) * 50)
if fix_sample == 'True':
seed_everything(42)
im = cv2.resize(input_img, (512, 512))
if type_in == 'Segmentation':
im_seg = im.copy()
im = img2tensor(im).unsqueeze(0) / 255.
labelmap = im.float()
elif type_in == 'Image':
im, _ = preprocessing(im, self.device)
_, _, H, W = im.shape
# Image -> Probability map
logits = self.model_seger(im)
logits = F.interpolate(logits, size=(H, W), mode="bilinear", align_corners=False)
probs = F.softmax(logits, dim=1)[0]
probs = probs.cpu().data.numpy()
labelmap = np.argmax(probs, axis=0)
labelmap = self.coler(labelmap)
labelmap = np.transpose(labelmap, (1,2,0))
labelmap = cv2.resize(labelmap, (512, 512))
labelmap = img2tensor(labelmap, bgr2rgb=False, float32=True)/255.
im_seg = tensor2img(labelmap)[:,:,::-1]
labelmap = labelmap.unsqueeze(0)
# extract condition features
c = self.base_model.get_learned_conditioning([prompt + ', ' + pos_prompt])
nc = self.base_model.get_learned_conditioning([neg_prompt])
features_adapter = self.model_seg(labelmap.to(self.device))
shape = [4, 64, 64]
# sampling
samples_ddim, _ = self.sampler.sample(S=50,
conditioning=c,
batch_size=1,
shape=shape,
verbose=False,
unconditional_guidance_scale=scale,
unconditional_conditioning=nc,
eta=0.0,
x_T=None,
features_adapter1=features_adapter,
mode='sketch',
con_strength=con_strength)
x_samples_ddim = self.base_model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_samples_ddim = x_samples_ddim.to('cpu')
x_samples_ddim = x_samples_ddim.permute(0, 2, 3, 1).numpy()[0]
x_samples_ddim = 255. * x_samples_ddim
x_samples_ddim = x_samples_ddim.astype(np.uint8)
return [im_seg, x_samples_ddim]
@torch.no_grad()
def process_draw(self, input_img, prompt, neg_prompt, pos_prompt, fix_sample, scale, con_strength, base_model):
if self.current_base != base_model:
ckpt = os.path.join("models", base_model)
pl_sd = torch.load(ckpt, map_location="cuda")
if "state_dict" in pl_sd:
sd = pl_sd["state_dict"]
else:
sd = pl_sd
self.base_model.load_state_dict(sd, strict=False)
self.current_base = base_model
if 'anything' in base_model.lower():
self.load_vae()
con_strength = int((1 - con_strength) * 50)
if fix_sample == 'True':
seed_everything(42)
input_img = input_img['mask']
c = input_img[:, :, 0:3].astype(np.float32)
a = input_img[:, :, 3:4].astype(np.float32) / 255.0
im = c * a + 255.0 * (1.0 - a)
im = im.clip(0, 255).astype(np.uint8)
im = cv2.resize(im, (512, 512))
im_edge = im.copy()
im = img2tensor(im)[0].unsqueeze(0).unsqueeze(0) / 255.
im = im > 0.5
im = im.float()
# extract condition features
c = self.base_model.get_learned_conditioning([prompt + ', ' + pos_prompt])
nc = self.base_model.get_learned_conditioning([neg_prompt])
features_adapter = self.model_sketch(im.to(self.device))
shape = [4, 64, 64]
# sampling
samples_ddim, _ = self.sampler.sample(S=50,
conditioning=c,
batch_size=1,
shape=shape,
verbose=False,
unconditional_guidance_scale=scale,
unconditional_conditioning=nc,
eta=0.0,
x_T=None,
features_adapter1=features_adapter,
mode='sketch',
con_strength=con_strength)
x_samples_ddim = self.base_model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_samples_ddim = x_samples_ddim.to('cpu')
x_samples_ddim = x_samples_ddim.permute(0, 2, 3, 1).numpy()[0]
x_samples_ddim = 255. * x_samples_ddim
x_samples_ddim = x_samples_ddim.astype(np.uint8)
return [im_edge, x_samples_ddim]
@torch.no_grad()
def process_keypose(self, input_img, type_in, prompt, neg_prompt, pos_prompt, fix_sample, scale, con_strength,
base_model):
if self.current_base != base_model:
ckpt = os.path.join("models", base_model)
pl_sd = torch.load(ckpt, map_location="cuda")
if "state_dict" in pl_sd:
sd = pl_sd["state_dict"]
else:
sd = pl_sd
self.base_model.load_state_dict(sd, strict=False)
self.current_base = base_model
if 'anything' in base_model.lower():
self.load_vae()
con_strength = int((1 - con_strength) * 50)
if fix_sample == 'True':
seed_everything(42)
im = cv2.resize(input_img, (512, 512))
if type_in == 'Keypose':
im_pose = im.copy()
im = img2tensor(im).unsqueeze(0) / 255.
elif type_in == 'Image':
image = im.copy()
im = img2tensor(im).unsqueeze(0) / 255.
mmdet_results = inference_detector(self.det_model, image)
# keep the person class bounding boxes.
person_results = process_mmdet_results(mmdet_results, self.det_cat_id)
# optional
return_heatmap = False
dataset = self.pose_model.cfg.data['test']['type']
# e.g. use ('backbone', ) to return backbone feature
output_layer_names = None
pose_results, _ = inference_top_down_pose_model(
self.pose_model,
image,
person_results,
bbox_thr=self.bbox_thr,
format='xyxy',
dataset=dataset,
dataset_info=None,
return_heatmap=return_heatmap,
outputs=output_layer_names)
# show the results
im_pose = imshow_keypoints(
image,
pose_results,
skeleton=self.skeleton,
pose_kpt_color=self.pose_kpt_color,
pose_link_color=self.pose_link_color,
radius=2,
thickness=2)
im_pose = cv2.resize(im_pose, (512, 512))
# extract condition features
c = self.base_model.get_learned_conditioning([prompt + ', ' + pos_prompt])
nc = self.base_model.get_learned_conditioning([neg_prompt])
pose = img2tensor(im_pose, bgr2rgb=True, float32=True) / 255.
pose = pose.unsqueeze(0)
features_adapter = self.model_pose(pose.to(self.device))
shape = [4, 64, 64]
# sampling
samples_ddim, _ = self.sampler.sample(S=50,
conditioning=c,
batch_size=1,
shape=shape,
verbose=False,
unconditional_guidance_scale=scale,
unconditional_conditioning=nc,
eta=0.0,
x_T=None,
features_adapter1=features_adapter,
mode='sketch',
con_strength=con_strength)
x_samples_ddim = self.base_model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_samples_ddim = x_samples_ddim.to('cpu')
x_samples_ddim = x_samples_ddim.permute(0, 2, 3, 1).numpy()[0]
x_samples_ddim = 255. * x_samples_ddim
x_samples_ddim = x_samples_ddim.astype(np.uint8)
return [im_pose[:, :, ::-1].astype(np.uint8), x_samples_ddim]
if __name__ == '__main__':
model = Model_all('cpu') |