File size: 4,159 Bytes
fb6c2da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import torch
import torch.nn as nn
import torch.nn.functional as F
from ldm.modules.attention import SpatialTransformer, BasicTransformerBlock

def conv_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.Conv1d(*args, **kwargs)
    elif dims == 2:
        return nn.Conv2d(*args, **kwargs)
    elif dims == 3:
        return nn.Conv3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")

def avg_pool_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D average pooling module.
    """
    if dims == 1:
        return nn.AvgPool1d(*args, **kwargs)
    elif dims == 2:
        return nn.AvgPool2d(*args, **kwargs)
    elif dims == 3:
        return nn.AvgPool3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")

class Downsample(nn.Module):
    """
    A downsampling layer with an optional convolution.
    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 downsampling occurs in the inner-two dimensions.
    """

    def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        stride = 2 if dims != 3 else (1, 2, 2)
        if use_conv:
            self.op = conv_nd(
                dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
            )
        else:
            assert self.channels == self.out_channels
            self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)

    def forward(self, x):
        assert x.shape[1] == self.channels
        return self.op(x)


class ResnetBlock(nn.Module):
    def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True):
        super().__init__()
        ps = ksize//2
        if in_c != out_c or sk==False:
            self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps)
        else:
            # print('n_in')
            self.in_conv = None
        self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1)
        self.act = nn.ReLU()
        self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps)
        if sk==False:
            self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps)
        else:
            self.skep = None

        self.down = down
        if self.down == True:
            self.down_opt = Downsample(in_c, use_conv=use_conv)

    def forward(self, x):
        if self.down == True:
            x = self.down_opt(x)
        if self.in_conv is not None: # edit
            x = self.in_conv(x)

        h = self.block1(x)
        h = self.act(h)
        h = self.block2(h)
        if self.skep is not None:
            return h + self.skep(x)
        else:
            return h + x


class Adapter(nn.Module):
    def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64, ksize=3, sk=False, use_conv=True):
        super(Adapter, self).__init__()
        self.unshuffle = nn.PixelUnshuffle(8)
        self.channels = channels
        self.nums_rb = nums_rb
        self.body = []
        for i in range(len(channels)):
            for j in range(nums_rb):
                if (i!=0) and (j==0):
                    self.body.append(ResnetBlock(channels[i-1], channels[i], down=True, ksize=ksize, sk=sk, use_conv=use_conv))
                else:
                    self.body.append(ResnetBlock(channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv))
        self.body = nn.ModuleList(self.body)
        self.conv_in = nn.Conv2d(cin,channels[0], 3, 1, 1)

    def forward(self, x):
        # unshuffle
        x = self.unshuffle(x)
        # extract features
        features = []
        x = self.conv_in(x)
        for i in range(len(self.channels)):
            for j in range(self.nums_rb):
                idx = i*self.nums_rb +j
                x = self.body[idx](x)
            features.append(x)

        return features