Spaces:
Runtime error
Runtime error
File size: 8,773 Bytes
b3478e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import torch
import torch.nn as nn
from collections import OrderedDict
def make_layers(block, no_relu_layers):
layers = []
for layer_name, v in block.items():
if 'pool' in layer_name:
layer = nn.MaxPool2d(kernel_size=v[0], stride=v[1], padding=v[2])
layers.append((layer_name, layer))
else:
conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride=v[3], padding=v[4])
layers.append((layer_name, conv2d))
if layer_name not in no_relu_layers:
layers.append(('relu_' + layer_name, nn.ReLU(inplace=True)))
return nn.Sequential(OrderedDict(layers))
class bodypose_model(nn.Module):
def __init__(self):
super(bodypose_model, self).__init__()
# these layers have no relu layer
no_relu_layers = ['conv5_5_CPM_L1', 'conv5_5_CPM_L2', 'Mconv7_stage2_L1',\
'Mconv7_stage2_L2', 'Mconv7_stage3_L1', 'Mconv7_stage3_L2',\
'Mconv7_stage4_L1', 'Mconv7_stage4_L2', 'Mconv7_stage5_L1',\
'Mconv7_stage5_L2', 'Mconv7_stage6_L1', 'Mconv7_stage6_L1']
blocks = {}
block0 = OrderedDict([('conv1_1', [3, 64, 3, 1, 1]), ('conv1_2', [64, 64, 3, 1, 1]), ('pool1_stage1', [2, 2,
0]),
('conv2_1', [64, 128, 3, 1, 1]), ('conv2_2', [128, 128, 3, 1, 1]),
('pool2_stage1', [2, 2, 0]), ('conv3_1', [128, 256, 3, 1, 1]),
('conv3_2', [256, 256, 3, 1, 1]), ('conv3_3', [256, 256, 3, 1, 1]),
('conv3_4', [256, 256, 3, 1, 1]), ('pool3_stage1', [2, 2, 0]),
('conv4_1', [256, 512, 3, 1, 1]), ('conv4_2', [512, 512, 3, 1, 1]),
('conv4_3_CPM', [512, 256, 3, 1, 1]), ('conv4_4_CPM', [256, 128, 3, 1, 1])])
# Stage 1
block1_1 = OrderedDict([('conv5_1_CPM_L1', [128, 128, 3, 1, 1]), ('conv5_2_CPM_L1', [128, 128, 3, 1, 1]),
('conv5_3_CPM_L1', [128, 128, 3, 1, 1]), ('conv5_4_CPM_L1', [128, 512, 1, 1, 0]),
('conv5_5_CPM_L1', [512, 38, 1, 1, 0])])
block1_2 = OrderedDict([('conv5_1_CPM_L2', [128, 128, 3, 1, 1]), ('conv5_2_CPM_L2', [128, 128, 3, 1, 1]),
('conv5_3_CPM_L2', [128, 128, 3, 1, 1]), ('conv5_4_CPM_L2', [128, 512, 1, 1, 0]),
('conv5_5_CPM_L2', [512, 19, 1, 1, 0])])
blocks['block1_1'] = block1_1
blocks['block1_2'] = block1_2
self.model0 = make_layers(block0, no_relu_layers)
# Stages 2 - 6
for i in range(2, 7):
blocks['block%d_1' % i] = OrderedDict([('Mconv1_stage%d_L1' % i, [185, 128, 7, 1, 3]),
('Mconv2_stage%d_L1' % i, [128, 128, 7, 1, 3]),
('Mconv3_stage%d_L1' % i, [128, 128, 7, 1, 3]),
('Mconv4_stage%d_L1' % i, [128, 128, 7, 1, 3]),
('Mconv5_stage%d_L1' % i, [128, 128, 7, 1, 3]),
('Mconv6_stage%d_L1' % i, [128, 128, 1, 1, 0]),
('Mconv7_stage%d_L1' % i, [128, 38, 1, 1, 0])])
blocks['block%d_2' % i] = OrderedDict([('Mconv1_stage%d_L2' % i, [185, 128, 7, 1, 3]),
('Mconv2_stage%d_L2' % i, [128, 128, 7, 1, 3]),
('Mconv3_stage%d_L2' % i, [128, 128, 7, 1, 3]),
('Mconv4_stage%d_L2' % i, [128, 128, 7, 1, 3]),
('Mconv5_stage%d_L2' % i, [128, 128, 7, 1, 3]),
('Mconv6_stage%d_L2' % i, [128, 128, 1, 1, 0]),
('Mconv7_stage%d_L2' % i, [128, 19, 1, 1, 0])])
for k in blocks.keys():
blocks[k] = make_layers(blocks[k], no_relu_layers)
self.model1_1 = blocks['block1_1']
self.model2_1 = blocks['block2_1']
self.model3_1 = blocks['block3_1']
self.model4_1 = blocks['block4_1']
self.model5_1 = blocks['block5_1']
self.model6_1 = blocks['block6_1']
self.model1_2 = blocks['block1_2']
self.model2_2 = blocks['block2_2']
self.model3_2 = blocks['block3_2']
self.model4_2 = blocks['block4_2']
self.model5_2 = blocks['block5_2']
self.model6_2 = blocks['block6_2']
def forward(self, x):
out1 = self.model0(x)
out1_1 = self.model1_1(out1)
out1_2 = self.model1_2(out1)
out2 = torch.cat([out1_1, out1_2, out1], 1)
out2_1 = self.model2_1(out2)
out2_2 = self.model2_2(out2)
out3 = torch.cat([out2_1, out2_2, out1], 1)
out3_1 = self.model3_1(out3)
out3_2 = self.model3_2(out3)
out4 = torch.cat([out3_1, out3_2, out1], 1)
out4_1 = self.model4_1(out4)
out4_2 = self.model4_2(out4)
out5 = torch.cat([out4_1, out4_2, out1], 1)
out5_1 = self.model5_1(out5)
out5_2 = self.model5_2(out5)
out6 = torch.cat([out5_1, out5_2, out1], 1)
out6_1 = self.model6_1(out6)
out6_2 = self.model6_2(out6)
return out6_1, out6_2
class handpose_model(nn.Module):
def __init__(self):
super(handpose_model, self).__init__()
# these layers have no relu layer
no_relu_layers = ['conv6_2_CPM', 'Mconv7_stage2', 'Mconv7_stage3',\
'Mconv7_stage4', 'Mconv7_stage5', 'Mconv7_stage6']
# stage 1
block1_0 = OrderedDict([('conv1_1', [3, 64, 3, 1, 1]), ('conv1_2', [64, 64, 3, 1, 1]),
('pool1_stage1', [2, 2, 0]), ('conv2_1', [64, 128, 3, 1, 1]),
('conv2_2', [128, 128, 3, 1, 1]), ('pool2_stage1', [2, 2, 0]),
('conv3_1', [128, 256, 3, 1, 1]), ('conv3_2', [256, 256, 3, 1, 1]),
('conv3_3', [256, 256, 3, 1, 1]), ('conv3_4', [256, 256, 3, 1, 1]),
('pool3_stage1', [2, 2, 0]), ('conv4_1', [256, 512, 3, 1, 1]),
('conv4_2', [512, 512, 3, 1, 1]), ('conv4_3', [512, 512, 3, 1, 1]),
('conv4_4', [512, 512, 3, 1, 1]), ('conv5_1', [512, 512, 3, 1, 1]),
('conv5_2', [512, 512, 3, 1, 1]), ('conv5_3_CPM', [512, 128, 3, 1, 1])])
block1_1 = OrderedDict([('conv6_1_CPM', [128, 512, 1, 1, 0]), ('conv6_2_CPM', [512, 22, 1, 1, 0])])
blocks = {}
blocks['block1_0'] = block1_0
blocks['block1_1'] = block1_1
# stage 2-6
for i in range(2, 7):
blocks['block%d' % i] = OrderedDict([('Mconv1_stage%d' % i, [150, 128, 7, 1, 3]),
('Mconv2_stage%d' % i, [128, 128, 7, 1, 3]),
('Mconv3_stage%d' % i, [128, 128, 7, 1, 3]),
('Mconv4_stage%d' % i, [128, 128, 7, 1, 3]),
('Mconv5_stage%d' % i, [128, 128, 7, 1, 3]),
('Mconv6_stage%d' % i, [128, 128, 1, 1, 0]),
('Mconv7_stage%d' % i, [128, 22, 1, 1, 0])])
for k in blocks.keys():
blocks[k] = make_layers(blocks[k], no_relu_layers)
self.model1_0 = blocks['block1_0']
self.model1_1 = blocks['block1_1']
self.model2 = blocks['block2']
self.model3 = blocks['block3']
self.model4 = blocks['block4']
self.model5 = blocks['block5']
self.model6 = blocks['block6']
def forward(self, x):
out1_0 = self.model1_0(x)
out1_1 = self.model1_1(out1_0)
concat_stage2 = torch.cat([out1_1, out1_0], 1)
out_stage2 = self.model2(concat_stage2)
concat_stage3 = torch.cat([out_stage2, out1_0], 1)
out_stage3 = self.model3(concat_stage3)
concat_stage4 = torch.cat([out_stage3, out1_0], 1)
out_stage4 = self.model4(concat_stage4)
concat_stage5 = torch.cat([out_stage4, out1_0], 1)
out_stage5 = self.model5(concat_stage5)
concat_stage6 = torch.cat([out_stage5, out1_0], 1)
out_stage6 = self.model6(concat_stage6)
return out_stage6
|