import gradio as gr from transformers import AutoTokenizer,MT5ForConditionalGeneration #loading tokenzier and model tokenizer = AutoTokenizer.from_pretrained("Adarsh203/Nepali_Abstractive_News_Summarizer_mT5") model = MT5ForConditionalGeneration.from_pretrained("Adarsh203/Nepali_Abstractive_News_Summarizer_mT5") # Define the summary function def summary(text): # Tokenize the input text input_ids = tokenizer(text, return_tensors="pt", max_length=1024, truncation=True).input_ids # Generate the summary max_summary_length = 150 summary_ids = model.generate(input_ids, max_length=max_summary_length, max_new_tokens=max_summary_length) # Decode the generated summary generated_summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) return generated_summary #create and launch the gradio interface gr.Interface( fn=summary, inputs="textbox", outputs="textbox", title="Nepali News Summarize", description="Summarize the Nepali News Articles", theme="compact" ).launch()