File size: 1,370 Bytes
c9f1429
 
 
 
 
 
 
 
 
 
040ed19
 
 
c9f1429
040ed19
c9f1429
 
 
040ed19
371feb6
c9f1429
 
040ed19
c9f1429
 
 
 
 
 
 
 
040ed19
c9f1429
040ed19
 
 
 
 
 
 
371feb6
040ed19
c9f1429
 
 
040ed19
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import os
import base64
import uvicorn
import json
from flask import Flask, request, jsonify
import edge_tts
import asyncio

app = Flask(__name__)

async def TextToAudioFile(text: str, model: str) -> str:
    """Converts text to an audio file and returns its base64 encoded string."""
    file_path = "main.mp3"

    # Remove existing file if it exists
    if os.path.exists(file_path):
        os.remove(file_path)

    # Convert text to audio
    communicate = edge_tts.Communicate(text, voice=model, pitch='+5Hz', rate='+10%')
    await communicate.save(file_path)

    # Read the audio file and encode it to base64
    with open(file_path, 'rb') as audio_file:
        audio_data = audio_file.read()
        audio_base64 = base64.b64encode(audio_data).decode('utf-8')

    return audio_base64

@app.route('/tts', methods=['POST'])
def tts():
    """Handles POST requests for text-to-speech conversion."""
    data = request.get_json()
    model = data.get('model', 'en-GB-SoniaNeural')
    if not data or 'text' not in data:
        return jsonify({'error': 'Text is required'}), 400
    
    text = data['text']
    
    # Run the async function in the event loop
    audio_base64 = asyncio.run(TextToAudioFile(text,model))
    
    return jsonify({'audio': audio_base64}), 200

if __name__ == '__main__':
    # Run the Flask app
    app.run(debug=True, port=5000)