Spaces:
Runtime error
Runtime error
Update app.py
Browse filesChanged target language to French
app.py
CHANGED
@@ -1,9 +1,8 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
-
from datasets import load_dataset
|
5 |
|
6 |
-
from transformers import
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
@@ -11,24 +10,25 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
11 |
# load speech translation checkpoint
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
-
# load text-to-speech checkpoint
|
15 |
-
|
16 |
-
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
18 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
-
|
20 |
-
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
-
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
|
23 |
|
24 |
def translate(audio):
|
25 |
-
outputs = asr_pipe(
|
|
|
|
|
|
|
|
|
26 |
return outputs["text"]
|
27 |
|
28 |
|
29 |
def synthesise(text):
|
30 |
-
inputs =
|
31 |
-
|
|
|
|
|
32 |
return speech.cpu()
|
33 |
|
34 |
|
@@ -41,8 +41,8 @@ def speech_to_speech_translation(audio):
|
|
41 |
|
42 |
title = "Cascaded STST"
|
43 |
description = """
|
44 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in
|
45 |
-
[
|
46 |
|
47 |

|
48 |
"""
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
|
|
4 |
|
5 |
+
from transformers import VitsModel, AutoTokenizer, pipeline
|
6 |
|
7 |
|
8 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
10 |
# load speech translation checkpoint
|
11 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
12 |
|
13 |
+
# load text-to-speech checkpoint
|
14 |
+
model = VitsModel.from_pretrained("facebook/mms-tts-fra")
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-fra")
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
|
18 |
def translate(audio):
|
19 |
+
outputs = asr_pipe(
|
20 |
+
audio,
|
21 |
+
max_new_tokens=256,
|
22 |
+
generate_kwargs={"task": "transcribe", "language": "hi"}
|
23 |
+
)
|
24 |
return outputs["text"]
|
25 |
|
26 |
|
27 |
def synthesise(text):
|
28 |
+
inputs = tokenizer(text=text, return_tensors="pt")
|
29 |
+
with torch.no_grad():
|
30 |
+
speech = model(**inputs).waveform
|
31 |
+
speech = speech[0] # remove batch dimension
|
32 |
return speech.cpu()
|
33 |
|
34 |
|
|
|
41 |
|
42 |
title = "Cascaded STST"
|
43 |
description = """
|
44 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in French. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Facebook's
|
45 |
+
[MMS TTS French](https://huggingface.co/facebook/mms-tts-fra) model for text-to-speech:
|
46 |
|
47 |

|
48 |
"""
|