Adbhut commited on
Commit
610bf04
·
1 Parent(s): dbfdf1a

Update app.py

Browse files

Changed target language to French

Files changed (1) hide show
  1. app.py +15 -15
app.py CHANGED
@@ -1,9 +1,8 @@
1
  import gradio as gr
2
  import numpy as np
3
  import torch
4
- from datasets import load_dataset
5
 
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
@@ -11,24 +10,25 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
11
  # load speech translation checkpoint
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
- # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
-
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
-
20
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
 
 
 
 
26
  return outputs["text"]
27
 
28
 
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
 
 
32
  return speech.cpu()
33
 
34
 
@@ -41,8 +41,8 @@ def speech_to_speech_translation(audio):
41
 
42
  title = "Cascaded STST"
43
  description = """
44
- Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
- [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
46
 
47
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
48
  """
 
1
  import gradio as gr
2
  import numpy as np
3
  import torch
 
4
 
5
+ from transformers import VitsModel, AutoTokenizer, pipeline
6
 
7
 
8
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
 
10
  # load speech translation checkpoint
11
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
12
 
13
+ # load text-to-speech checkpoint
14
+ model = VitsModel.from_pretrained("facebook/mms-tts-fra")
15
+ tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-fra")
 
 
 
 
 
16
 
17
 
18
  def translate(audio):
19
+ outputs = asr_pipe(
20
+ audio,
21
+ max_new_tokens=256,
22
+ generate_kwargs={"task": "transcribe", "language": "hi"}
23
+ )
24
  return outputs["text"]
25
 
26
 
27
  def synthesise(text):
28
+ inputs = tokenizer(text=text, return_tensors="pt")
29
+ with torch.no_grad():
30
+ speech = model(**inputs).waveform
31
+ speech = speech[0] # remove batch dimension
32
  return speech.cpu()
33
 
34
 
 
41
 
42
  title = "Cascaded STST"
43
  description = """
44
+ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in French. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Facebook's
45
+ [MMS TTS French](https://huggingface.co/facebook/mms-tts-fra) model for text-to-speech:
46
 
47
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
48
  """