import gradio as gr import soundfile as sf import tempfile import shutil import os import librosa import time import numpy as np import subprocess from pywhispercpp.model import Model model = Model('base.en', n_threads=6,models_dir="./Models") def resample_to_16k(audio, orig_sr): y_resampled = librosa.resample(y=audio, orig_sr=orig_sr, target_sr = 16000) return y_resampled def transcribe(audio): print(type(audio)) sr,y = audio y = y.astype(np.float32) y /= np.max(np.abs(y)) y_resampled = resample_to_16k(y, sr) with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio: temp_audio_path = temp_audio.name sf.write(temp_audio_path, y_resampled, 16000) start_time_py = time.time() py_result = model.transcribe(f'{temp_audio_path}', n_threads=6) end_time_py = time.time() print("Py_result : ",py_result) print("--------------------------") print(f"Execution time using py: {end_time_py - start_time_py} seconds") output_text = "" for segment in py_result: output_text+=segment.text return output_text, (end_time_py - start_time_py) demo = gr.Interface( transcribe, inputs = "microphone", # gr.Audio(sources=["microphone"]), outputs=[gr.Textbox(label="Py_Transcription"),gr.Textbox(label="Time taken for Transcription")] ) demo.launch()