Add-Vishnu's picture
Update app.py
30ad0f5
raw
history blame
1.35 kB
import gradio as gr
import torch
from transformers import pipeline
import soundfile as sf
import tempfile
import shutil
import os
import librosa
import time
def resample_to_16k(audio, orig_sr):
y_resampled = librosa.resample(y=audio, orig_sr=orig_sr, target_sr = 16000)
return y_resampled
def transcribe(audio,):
sr,y = audio
y = y.astype(np.float32)
y /= np.max(np.abs(y))
y_resampled = resample_to_16k(y, sr)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio:
temp_audio_path = temp_audio.name
sf.write(temp_audio_path, y_resampled, 16000)
command = f"""main.exe -m 'I:\\ASR\\Whisper CPP\\SubGen\\whisper_blas_bin_v1_3_0\\models\\ggml-model-whisper-small.en.bin' -osrt -f '{temp_audio_path}' -nt"""
start_time = time.time()
result = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
end_time = time.time()
print("Output",result.stdout)
print("Error",result.stderr)
transcription = result.stdout
print(transcription)
print("--------------------------")
print(f"Execution time: {end_time - start_time} seconds")
return transcription
demo = gr.Interface(
transcribe,
gr.Audio(source="microphone"),
gr.Textbox(label="CLI_Transcription")
)
demo.launch()