import gradio as gr import soundfile as sf import tempfile import shutil import os import librosa import time def resample_to_16k(audio, orig_sr): y_resampled = librosa.resample(y=audio, orig_sr=orig_sr, target_sr = 16000) return y_resampled def transcribe(audio,): sr,y = audio y = y.astype(np.float32) y /= np.max(np.abs(y)) y_resampled = resample_to_16k(y, sr) with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio: temp_audio_path = temp_audio.name sf.write(temp_audio_path, y_resampled, 16000) command = f"""'.\\Whisper_CPP_ASR_CLI\\whisper_blas_bin_v1_3_0\\main.exe' -m '.\\Whisper_CPP_ASR_CLI\\whisper_blas_bin_v1_3_0\\models\\ggml-model-whisper-small.en.bin' -osrt -f '{temp_audio_path}' -nt""" start_time = time.time() result = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) end_time = time.time() print("Output",result.stdout) print("Error",result.stderr) transcription = result.stdout print(transcription) print("--------------------------") print(f"Execution time: {end_time - start_time} seconds") return transcription demo = gr.Interface( transcribe, gr.Audio(sources=["microphone"]), gr.Textbox(label="CLI_Transcription") ) demo.launch()