Add1E's picture
Update app.py
2aed53f
raw
history blame
4.5 kB
import streamlit as st
import requests
from bs4 import BeautifulSoup
import csv
import os
import pandas as pd
import random
from huggingface_hub import Repository, HfApi, HfFolder
import openai
api = HfApi()
token = os.getenv("token")
tokenread = os.getenv("tokenread")
localdir = "HeadlinePrediction"
repo = Repository(local_dir=localdir, clone_from="https://huggingface.co/spaces/Add1E/HeadlinePrediction", token=token)
def add_to_csv(var1, var2, var3, var4, var5, var6, var7, filename):
# Öffnen der CSV-Datei im Anhängemodus
with open(os.path.abspath(f'{localdir}/results.csv'), 'a', newline='', encoding = "utf-8") as file:
writer = csv.writer(file)
# Hinzufügen der Variablen als neue Zeile in die CSV-Datei
writer.writerow([var1, var2, var3, var4, var5, var6, var7])
# Definiert die Funktion zum Scrapen der Webseite
def scrape_website(url):
try:
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
content = {
'scraped_html': ' '.join(p.get_text() for p in soup.find_all('p', class_="sc-beqWaB jOAegM")),
'heute_überschrift': ' '.join(p.get_text() for p in soup.find_all('h1', class_="sc-beqWaB iTcspr")),
'heute_zsm': ' '.join(p.get_text() for p in soup.find_all('p', class_="sc-beqWaB iOdRIJ"))
}
return content
except Exception as e:
return str(e)
def send_to_chatgpt(api_key, prompt_file, transcript):
try:
# Liest den Prompt aus der Datei
with open(prompt_file, 'r', encoding='utf-8') as file:
prompt = file.read().strip()
openai.api_key = api_key
response = openai.ChatCompletion.create(
model="gpt-4-1106-preview",
messages=[
{"role": "system", "content": prompt},
{"role": "system", "content": transcript}
],
)
return response.choices[0].message["content"]
except Exception as e:
return str(e)
st.title("Webseiten-Scraper")
# Beispiel für die Verwendung der Funktiona
api_key = os.getenv("api_key") # Setzen Sie hier Ihren OpenAI-API-Schlüssel ein
base_prompt = "txt.txt"
csv_name = "results.csv"
df = pd.read_csv(csv_name, encoding='utf-8')
df.columns = [col.replace(' ', '_') for col in df.columns]
# Eingabefelder für URL und p_class
url = st.text_input("URL eingeben", "https://www.beispielwebsite.com")
if st.button("Scrape"):
if url:
scraped_html = scrape_website(url)
response = send_to_chatgpt(api_key, base_prompt, scraped_html['scraped_html'])
st.code(response)
teile = response.split("Kernaussagen:")
ueberschriften_teil, kernaussagen_teil = teile[0], teile[1]
ueberschriften = ueberschriften_teil.split("\n")[1:] # Erste Zeile überspringen
ueberschrift_1 = ueberschriften[0].split(" ", 1)[1] # "1." entfernen
ueberschrift_2 = ueberschriften[1].split(" ", 1)[1] # "2." entfernen
kernaussagen = kernaussagen_teil.split("\n")[1:] # Erste Zeile überspringen
kernaussage_1 = kernaussagen[0].split(" ", 1)[1] # "1." entfernen
kernaussage_2 = kernaussagen[1].split(" ", 1)[1] # "2." entfernen
add_to_csv(
url, scraped_html['heute_überschrift'], ueberschrift_1, ueberschrift_2, scraped_html['heute_zsm'],
kernaussage_1, kernaussage_2, csv_name
)
else:
st.error("Bitte geben Sie eine gültige URL ein.")
if st.sidebar.button("Upload Data"):
repo.git_add(os.path.abspath(f'{localdir}/results.csv'))
repo.git_commit("Add new headlines.csv")
repo.git_push()
auswahl = st.sidebar.selectbox("Wählen Sie eine Prediction:", ["None", "Prediction 1", "Prediction 2", "Prediction 3", "Prediction 4", "Prediction 5"])
random_numbers = set()
while len(random_numbers) < 5:
random_numbers.add(random.randint(0, len(df)-1))
random_numbers = list(random_numbers)
if auswahl == "Prediction 1":
st.dataframe(df.iloc[random_numbers[0]])
elif auswahl == "Prediction 2":
st.dataframe(df.iloc[random_numbers[1]])
elif auswahl == "Prediction 3":
st.dataframe(df.iloc[random_numbers[2]])
elif auswahl == "Prediction 4":
st.dataframe(df.iloc[random_numbers[3]])
elif auswahl == "Prediction 5":
st.dataframe(df.iloc[random_numbers[4]])
if st.sidebar.button("Show Full Data"):
df = pd.read_csv(csv_name, encoding='utf-8')
st.dataframe(df)