Add1E's picture
Update utils.py
d12d016
raw
history blame
3.46 kB
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.ensemble import RandomForestRegressor
import pandas as pd
from tqdm.auto import tqdm
import streamlit as st
from huggingface_hub import Repository, HfApi, HfFolder
import os
import random
tqdm.pandas()
api = HfApi()
token = os.getenv("token") # Das Token wird aus den Hugging Face Secrets abgerufen
tokenread = os.getenv("tokenread")
localdir = "SpotifyHitPrediction"
repo = Repository(local_dir=localdir, clone_from="https://huggingface.co/spaces/Add1E/SpotifyHitPrediction", token=token)
def remove_non_utf8_characters(text):
# Encode using UTF-8, ignore errors
encoded_string = text.encode('utf-8', 'remove')
# Decode back to string
return encoded_string.decode('utf-8')
def predict_popularity(features,trainset):
predictions = [None] * 2
predictions[0], predictions[1] = rf_model.predict([features]), model.predict([features])
old_df = pd.read_csv(f'{localdir}/top50.csv', encoding='utf-8')
addToCsvAndTrain(trainset, old_df)
st.write("Regression :")
st.code(f"MeanSquaredError: {mse}, rSqared: {r2}")
st.write("Random Forest :")
st.code(f"MeanSquaredError: {rf_mse}, rSqared: {rf_r2}")
return predictions
def addToCsvAndTrain(trainset, old_df):
trainset = [
[trainset[0], remove_non_utf8_characters(trainset[1]), remove_non_utf8_characters(trainset[2]), trainset[3], trainset[4], trainset[5], trainset[6], trainset[7],
trainset[8], trainset[9], trainset[10], trainset[11], trainset[12], trainset[13]
]
]
neues_df = pd.DataFrame(trainset, columns= data.columns)
df = pd.concat([old_df, neues_df], ignore_index=True)
df.to_csv(f'{localdir}/top50.csv', index=False, encoding='utf-8')
if(random.randint(1, 10) == 7):
st.session_state['reset'] = 1
repo.git_add(os.path.abspath(f'{localdir}/top50.csv'))
repo.git_commit("Add top50.csv")
repo.git_push()
data = pd.read_csv('top50.csv', encoding='utf-8')
print(data.head())
# Let's also describe the data to get a sense of the distributions
print(data.describe())
# Selecting the features and the target variable
X = data.drop(['Unnamed: 0', 'Track.Name', 'Artist.Name', 'Genre', 'Popularity'], axis=1)
y = data['Popularity']
# Splitting the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Initializing the Linear Regression model
model = LinearRegression()
# Fitting the model
model.fit(X_train, y_train)
# Making predictions
y_pred = model.predict(X_test)
# Calculating the performance metrics
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
# Initialize the Random Forest Regressor
rf_model = RandomForestRegressor(n_estimators=100, random_state=42)
# Fitting the model
rf_model.fit(X_train, y_train)
# Making predictions
rf_pred = rf_model.predict(X_test)
# Calculating the performance metrics
rf_mse = mean_squared_error(y_test, rf_pred)
rf_r2 = r2_score(y_test, rf_pred)
# Feature importances
feature_importances = rf_model.feature_importances_
# Create a pandas series with feature importances
importances = pd.Series(feature_importances, index=X.columns)
# Sort the feature importances in descending order
sorted_importances = importances.sort_values(ascending=False)