from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score from sklearn.ensemble import RandomForestRegressor import pandas as pd from tqdm.auto import tqdm import streamlit as st from huggingface_hub import Repository, HfApi, HfFolder import os tqdm.pandas() api = HfApi() token = os.getenv("token") # Das Token wird aus den Hugging Face Secrets abgerufen # Überprüfen, ob das Token vorhanden ist if token is None: raise ValueError("Hugging Face API-Token ist nicht gesetzt.") # Klonen Sie das Repository (dies wird in Ihrem Space ausgeführt) repo = Repository(local_dir="SpotifyHitPrediction", clone_from="https://huggingface.co/Add1E/SpotifyHitPrediction", use_auth_token=token) def predict_popularity(features, trainset): predictions = [None] * 2 predictions[0], predictions[1] = rf_model.predict([features]), model.predict([features]) addToCsvAndTrain(trainset) return predictions def addToCsvAndTrain(trainset): trainset = [ [trainset[0],trainset[1],trainset[2],trainset[3],trainset[4],trainset[5],trainset[6],trainset[7], trainset[8],trainset[9],trainset[10],trainset[11],trainset[12],trainset[13] ] ] neues_df = pd.DataFrame(trainset, columns= data.columns) df = pd.concat([data, neues_df], ignore_index=True) df.to_csv('top50.csv', index=False) repo.git_add('top50.csv') repo.git_commit("Add top50.csv") repo.git_push() data = pd.read_csv('top50.csv', encoding='ISO-8859-1') print(data.head()) # Let's also describe the data to get a sense of the distributions print(data.describe()) # Selecting the features and the target variable X = data.drop(['Unnamed: 0', 'Track.Name', 'Artist.Name', 'Genre', 'Popularity'], axis=1) y = data['Popularity'] # Splitting the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Initializing the Linear Regression model model = LinearRegression() # Fitting the model model.fit(X_train, y_train) # Making predictions y_pred = model.predict(X_test) # Calculating the performance metrics mse = mean_squared_error(y_test, y_pred) r2 = r2_score(y_test, y_pred) # Initialize the Random Forest Regressor rf_model = RandomForestRegressor(n_estimators=100, random_state=42) # Fitting the model rf_model.fit(X_train, y_train) # Making predictions rf_pred = rf_model.predict(X_test) # Calculating the performance metrics rf_mse = mean_squared_error(y_test, rf_pred) rf_r2 = r2_score(y_test, rf_pred) # Feature importances feature_importances = rf_model.feature_importances_ # Create a pandas series with feature importances importances = pd.Series(feature_importances, index=X.columns) # Sort the feature importances in descending order sorted_importances = importances.sort_values(ascending=False)