|
import gradio as gr |
|
from fastai.vision.all import load_learner, PILImage |
|
|
|
learn = load_learner('export.pkl') |
|
labels = learn.dls.vocab |
|
|
|
def predict(img): |
|
img = PILImage.create(img) |
|
pred, pred_idx, probs = learn.predict(img) |
|
return {labels[i]: float(probs[i]) for i in range(len(labels))} |
|
|
|
iface = gr.Interface( |
|
fn=predict, |
|
inputs=gr.Image(), |
|
outputs=gr.Label(num_top_classes=3), |
|
title="Breast Cancer Detection", |
|
description="Upload a breast X-ray image to detect potential issues.", |
|
examples=['img1.jpeg', 'img2.jpeg'] |
|
) |
|
|
|
iface.launch() |